
Electronics and Telecommunications Faculty, UPB Laboratory 3
Advanced Communications Networks, Protocols and Services

 1

Laboratory 3 Mininet network emulator

Part 1: Introduction to Mininet

1.1 Mininet features

Mininet is a network emulator, or perhaps more precisely a network emulation orchestration

system. It runs a collection of end-hosts, switches, routers, and links on a single Linux kernel. It

uses lightweight virtualization to make a single system look like a complete network, running the

same kernel, system, and user code. A Mininet host behaves just like a real machine; you can ssh

into it (if you start up sshd and bridge the network to your host) and run arbitrary programs

(including anything that is installed on the underlying Linux system.) The programs you run can

send packets through what seems like a real Ethernet interface, with a given link speed and delay.

Packets get processed by what looks like a real Ethernet switch, router, or middlebox, with a given

amount of queueing. When two programs, like an iperf client and server, communicate through

Mininet, the measured performance should match that of two (slower) native machines

[https://github.com/mininet/mininet/wiki/Introduction-to-Mininet].

Mininet features:

 It's fast - starting up a simple network takes just a few seconds. This means that your run-

edit-debug loop can be very quick.

 You can create custom topologies: a single switch, larger Internet-like topologies, the

Stanford backbone, a data center, or anything else.

 You can run real programs: anything that runs on Linux is available for you to run, from

web servers to TCP window monitoring tools to Wireshark.

 You can customize packet forwarding: Mininet's switches are programmable using the

OpenFlow protocol. Custom Software-Defined Network designs that run in Mininet can

easily be transferred to hardware OpenFlow switches for line-rate packet forwarding.

 You can share and replicate results: anyone with a computer can run your code once

you've packaged it up.

 You can use it easily: you can create and run Mininet experiments by writing simple (or

complex if necessary) Python scripts.

 Mininet is an open source project, so you are encouraged to examine its source code on

https://github.com/mininet, modify it, fix bugs, file issues/feature requests, and submit

patches/pull requests. You may also edit this documentation to fix any errors or add

clarifications or additional information.

Electronics and Telecommunications Faculty, UPB Laboratory 3
Advanced Communications Networks, Protocols and Services

 2

1.2 Mininet basic commands.

Display Mininet CLI commands:

mininet> help

Display nodes:

mininet> nodes

Display links:

mininet> net

Dump information about all nodes:
mininet> dump

Part 2. Practice

Step 1: Starting Mininet

 1) Open VirtulaBox virtualization environment and start the Mininet virtual machine. Login to the

Mininet machine using username mininet and password mininet.

2) To view control traffic using the OpenFlow Wireshark dissector, first open wireshark in the

background:

$ sudo wireshark &

In the Wireshark filter box, enter the of value for the filter, then click Apply. In Wireshark,

click Capture, then Interfaces, then select Start on the loopback interface

(lo).For now, there should be no OpenFlow packets displayed in the main window.

2) Start the Mininet program with the default topology with the command:

$ sudo mn -h

 This command will start Mininet with a topology based on a switch with two

hosts attached to it and a basic SDN controller – Figure 1. The Mininet CLI

will come up:

mininet>

Q1. Analyze the network topology using the basic Mininet commands.

Besides the basic Mininet commands system commands can be used on any of the virtual

machines representing the nodes in the topology – h1, h2 and s1 in the basic topology.

Commands like ifconfig, ping, ps, iperf, etc., can be used on the virtual nodes. Examples:

C
SW

2
 H1 H2

Figure 1

Electronics and Telecommunications Faculty, UPB Laboratory 3
Advanced Communications Networks, Protocols and Services

 3

To check details about the interfaces on a host or switch:

mininet> h1 ifconfig -a

mininet> s1 ifconfig -a

You should see the host’s h1-eth0 and loopback (lo) interfaces. Note that this interface

(h1-eth0) is not seen by the primary Linux system when ifconfig is run, because it is

specific to the network namespace of the host process.

In contrast, the switch by default runs in the root network namespace, so running a command on

the “switch” is the same as running it from a regular terminal.

Q2. Write the IP addresses for the hosts h1 and h2 find out using the ifconfig command.

Note that only the network is virtualized; each host process sees the same set of processes and

directories. For example, print the process list from a host process:

mininet> h1 ps -a

This should be the same as that seen by the root network namespace:

mininet> s1 ps -a

Step 2: Test connectivity between hosts

Now, verify that you can ping from host 0 to host 1:

mininet> h1 ping -c 1 h2

If a string appears later in the command with a node name, that node name is replaced by its IP

address; this happened for h2.

You should see OpenFlow control traffic in Wireshark. The first host ARPs for the MAC address

of the second, which causes a packet_in message to go to the controller. The controller then

sends a packet_out message to flood the broadcast packet to other ports on the switch (in this

example, the only other data port). The second host sees the ARP request and sends a reply. This

reply goes to the controller, which sends it to the first host and pushes down a flow entry.

Now the first host knows the MAC address of the second, and can send its ping via an ICMP

Echo Request. This request, along with its corresponding reply from the second host, both go

the controller and result in a flow entry pushed down (along with the actual packets getting sent

out).

Q3. Write the RTT values obtained with the two ping commands.

Repeat the last ping:

Electronics and Telecommunications Faculty, UPB Laboratory 3
Advanced Communications Networks, Protocols and Services

 4

mininet> h1 ping -c 1 h2

You should see a much lower ping time for the second try. A flow entry covering ICMP ping

traffic was previously installed in the switch, so no control traffic was generated, and the packets

immediately pass through the switch.

Q4. Write the RTT values obtained with the two ping commands. Rerun the ping command, this

time sending 40 packets. Notice what happens with the RTT value.

An easier way to run this test is to use the Mininet CLI built-in pingall command, which does an

all-pairs ping:

mininet> pingall

Run a simple web server and client

Remember that ping isn’t the only command you can run on a host! Mininet hosts can run any

command or application that is available to the underlying Linux system (or VM) and its file

system. You can also enter any bash command, including job control (&, jobs, kill, etc.)

Next, try starting a simple HTTP server on h1, making a request from h2, then shutting down the

web server:

mininet> h1 python -m SimpleHTTPServer 80 &

mininet> h2 wget -O - h1s

...

mininet> h1 kill %python

To end the Mininet session exit the CLI:

mininet> exit

If Mininet crashes for some reason, clean it up:

$ sudo mn -c

Use iperf to exchange ip traffic between hosts

Repeat the experiment with the HTTP server using iperf server and client instead. Consult the

web to find out how to configure iperf (E.g. https://openmaniak.com/iperf.php). Run the

iperf server on h1 and the iperf client on h2.

Using iperf with TCP traffic measure the link capacity between host 1 and host 2.

Q5. Write the value for the link capacity between h1 and h2.

Electronics and Telecommunications Faculty, UPB Laboratory 3
Advanced Communications Networks, Protocols and Services

 5

Mininet 2.0 allows you to set link parameters, and these can be set automatically from the

command line. Before launching the next command, you should stop the running Mininet first.

 $ sudo mn --link tc,bw=10,delay=30ms

Measure the link capacity and link delay (RTT) between h1 and h2 using iperf and ping

commands. Use ping with multiple packets to get the correct link delay. Remember that the delay

for the first packet has a larger value due to interaction with the controller:

Q6. Write the value for the link capacity and RTT between h1 and h2.

Changing the topology size and type. Custom topology.

The default topology is a single switch connected to two hosts. You could change this to a

different topo with --topo, and pass parameters for that topology’s creation. Start Mininet with the

following command:

$ sudo mn --topo single,3

Q7. Inspect the topology. How many host there are in this topology?

Restart Mininet with the following command:

$ sudo mn --topo linear, 4

Q8. Inspect the topology with Mininet basic commands. Draw the new topology?

Run a regression test to directly test the connectivity for a topology:

$ sudo mn --test pingall --topo single,3

Custom topologies can be easily defined as well, using a simple Python API, and an example is

provided in custom/topo-2sw-2host.py. This example connects two switches directly,

with a single host connected on each switch (Figure 3).

Using the custom topology provided in the file topo-2sw-2host.py build the new topology

given in Figure 2. Rename the file as custom_topo.py. Start Mininet with the new topology:

sudo mn --custom ~/mininet/custom/custom_topo.py --topo mytopo

C

SW1 SW2 SW3 SW4

 H1 H2 H3 H4 Figure 2

Electronics and Telecommunications Faculty, UPB Laboratory 3
Advanced Communications Networks, Protocols and Services

 6

Figure 3 [http://mininet.org/walkthrough/]

References:

 http://mininet.org/walkthrough/

 https://github.com/mininet/mininet/wiki/Introduction-to-Mininet

 https://github.com/mininet/mininet/wiki/Documentation

 https://openmaniak.com/iperf.php

 https://github.com/mininet/openflow-tutorial/wiki

http://mininet.org/walkthrough/
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet
https://github.com/mininet/mininet/wiki/Documentation
https://openmaniak.com/iperf.php

