
Electronics and Telecommunications Faculty, UPB Laboratory 3
Advanced Communications Networks, Protocols and Services

 1

Laboratory 3 OpenFlow Protocol

Part 1: Introduction to Openflow and Software Defined Networks (SDN)

1.1 SDN and OpenFlow

 Software-Defined Networking proposes a separation of the network control plane from the

forwarding plane. This architecture decouples the network control and forwarding functions

enabling the network control to become directly programmable and the underlying infrastructure to

be abstracted for applications and network services. The OpenFlow protocol was standardized to

provide the communication between the SDN Controller (Control Plane) and the network devices

(Data Plane) – Figure 1. OpenFlow is an open interface for remotely controlling the forwarding

tables in network switches, routers, and access points. Upon this low-level primitive, researchers

can build networks with new high-level properties. For example, OpenFlow enables more secure

default-off networks, wireless networks with smooth handoffs, scalable data center networks, host

mobility, more energy-efficient networks and new wide-area networks

[https://github.com/mininet/openflow-tutorial/wiki].

Figure 1: SDN Architecture [http://www.openairinterface.org/?page_id=466]

Software defined networking provides the following capabilities

[https://technet.microsoft.com/en-us/windows-server-docs/networking/sdn/software-defined-

networking]:

The ability to abstract applications and workloads from the underlying physical network,

which is accomplished by virtualizing the network. For example, software defined networking

provides virtual abstractions for physical network elements, such as IP addresses, switches, and load

balancers.

The ability to centrally define and control policies that govern both physical and virtual

networks, including traffic flow between these two network types.

Electronics and Telecommunications Faculty, UPB Laboratory 3
Advanced Communications Networks, Protocols and Services

 2

1.2 OpenFlow messages.

Some examples of OpenFLow messages are presented in the next tables. In Table 1 general purpose

messages are shown:

Message Type Description

Hello Controller->Switch
following the TCP handshake, the controller sends its version

number to the switch.

Hello Switch->Controller the switch replies with its supported version number.

Features

Request
Controller->Switch the controller asks to see which ports are available.

Set Config Controller->Switch in this case, the controller asks the switch to send flow expirations.

Features

Reply
Switch->Controller

the switch replies with a list of ports, port speeds, and supported

tables and actions.

Port Status Switch->Controller
enables the switch to inform that controller of changes to port

speeds or connectivity. Ignore this one, it appears to be a bug.

Table 1: General purpose OpenFlow messages

 In Table 2 the messages used for flow management are shown:

Message Type Description

Packet-In Switch->Controller
a packet was received and it didn't match any entry in the switch's

flow table, causing the packet to be sent to the controller.

Packet-

Out
Controller->Switch controller send a packet out one or more switch ports.

Flow-Mod Controller->Switch instructs a switch to add a particular flow to its flow table.

Flow-

Expired
Switch->Controller a flow timed out after a period of inactivity.

 Table 1: Flow management messages

Electronics and Telecommunications Faculty, UPB Laboratory 3
Advanced Communications Networks, Protocols and Services

 3

Part 2. Practice

[https://github.com/mininet/openflow-tutorial/wiki/Learn-Development-Tools]

Step 1: Implementing Mininet network

 1) Open VirtulaBox virtualization environment and start the Mininet virtual machine (Before

starting the machine check the network settings for the virtual machine – bridge adapter must be

selected). Login to the Mininet machine using username mininet and password mininet.

2) Connect from Linux terminal on the local machine to the Mininet virtual machine using SSH:

$ ssh -X mininet@MininetMachine’sIPaddress

The Mininet machine’s IP address can be discovered with the ifconfig command in the linux

terminal.

Figure 2: Mininet network topology [https://github.com/mininet/openflow-tutorial/wiki/]

3) Start the Mininet program with the topology given in Figure 2:

$ sudo mn --topo single,3 --mac --switch ovsk --controller remote

 This tells Mininet to start up a 3-host, single-(openvSwitch-based) switch topology, set the MAC

address of each host equal to its IP, and point to a remote controller which defaults to the

localhost.

Q1. Analyze the network topology using the basic Mininet commands (mininet>help to find

the commands).

Electronics and Telecommunications Faculty, UPB Laboratory 3
Advanced Communications Networks, Protocols and Services

 4

Step 2: ovs-ofctl tool for manually installing flows

ovs-ofctl is a utility that comes with Open vSwitch and enables visibility and control

over a single switch's flow table. It is especially useful for debugging, by viewing flow state and

flow counters. Most OpenFlow switches can start up with a passive listening port, from which you

can poll the switch, without having to add debugging code to the controller.

4) Create a second SSH window to the Mininet machine and run:

 $ sudo ovs-ofctl show s1

The show command connects to the switch and dumps out its port state and capabilities.

To display data about the flow-table dump-flows command must be used.

$ ovs-ofctl dump-flows s1

The flow-table must be empty because we haven’t started the controller yet.

5) Try to ping h2 from h1 in the Mininet machine:

mininet> h1 ping -c3 h2

Q2. Does ping work? Why?

As we saw before, the flow table is empty and the controller is not connected to populate the flow

table, that’s why the switch does not know how to deal with the incoming traffic. Ovs-ofctl

can be used to manually insert flow entries in the switch’s forwarding table. To manually install

the necessary flows, type the following commands in the SSH terminal:

ovs-ofctl add-flow s1 in_port=1,actions=output:2

ovs-ofctl add-flow s1 in_port=2,actions=output:1

This will forward packets coming at port 1 to port 2 and vice-verca. Verify by checking the flow-

table

 # ovs-ofctl dump-flows s1

Run the ping command again in mininet console:

 mininet> h1 ping -c3 h2

Q3. Does ping work? Why?

Q4. Check the flow-table again and look the statistics for each flow entry.

Electronics and Telecommunications Faculty, UPB Laboratory 3
Advanced Communications Networks, Protocols and Services

 5

Step 3: Running a remote controller

6) Open a new ssh window to Mininet Machine. To view control traffic using the OpenFlow

Wireshark dissector, first open wireshark on the ssh terminal:

$ sudo wireshark &

In the Wireshark filter box, enter the of value for the filter, then click Apply. In Wireshark,

click Capture, then Interfaces, then select Start on the loopback interface

(lo). For now, there should be no OpenFlow packets displayed in the main window.

7) Now, with the Wireshark dissector listening, start the OpenFlow reference controller. This starts

a simple controller that acts as a learning switch:

 $ controller ptcp:

Q5. Analyze the OpenFlow messages displayed in Wireshark. Expand the messages and analyze

their content.

8) Now, we'll view messages generated in response to packets. Ping command will be used to

trigger the flow-table update OpenFlow messages.

Before that, update wireshark filter to ignore the echo-request/reply messages (these are used to

keep the connection between the switch and controller alive): Type the following in your

wireshark filter, then press apply:

of and not (of10.echo_request.type or of10.echo_reply.type)

For older version of the wireshark plugin, you may need to use a slightly different syntax:

of && (of.type != 3) && (of.type != 2)

Run a ping to view the OpenFlow messages being used. You will need to run this without having

any flows between h1 and h2 already installed, e.g. from the "add-flows" command above.

Remove any existing flows with:

 $ sudo ovs-ofctl del-flows s1

It's also recommended to clean up ARP cache on both hosts, otherwise you might not see some

ARP requests/replies as the cache will be used instead:

mininet> h1 ip -s -s neigh flush all

mininet> h2 ip -s -s neigh flush all

Do the ping in the Mininet console:

mininet> h1 ping -c1 h2

Q6. Analyze the OpenFlow messages displayed in Wireshark. Analyze their content.

Electronics and Telecommunications Faculty, UPB Laboratory 3
Advanced Communications Networks, Protocols and Services

 6

Use iperf to benchmark the controller

9) iperf is a command-line tool for checking speeds between two computers.

Here, you'll benchmark the reference controller; later, you'll compare this with the provided hub

controller, and your flow-based switch (when you've implemented it). In the mininet console run :

mininet> iperf

This Mininet command runs an iperf TCP server on one virtual host, then runs an iperf client on a

second virtual host. Once connected, they blast packets between each other and report the results.

Now compare with the user-space switch. In the mininet console:

 mininet> exit

10) Start the same Mininet with the user-space switch:

$ sudo mn --topo single,3 --mac --controller remote --switch user

Run one more iperf test with the reference controller:

mininet> iperf

Q6. Which is the difference between the two scenarios?

With the user-space switch, packets must cross from user-space to kernel-space and back on every

hop, rather than staying in the kernel as they go through the switch. The user-space switch is easier

to modify (no kernel oops'es to deal with), but slower for simulation.

References:

 http://mininet.org/walkthrough/

 https://github.com/mininet/mininet/wiki/Introduction-to-Mininet

 https://github.com/mininet/mininet/wiki/Documentation

 https://openmaniak.com/iperf.php

 https://github.com/mininet/openflow-tutorial/wiki

 https://technet.microsoft.com/en-us/windows-server-docs/networking/sdn/software-

defined-networking

 http://www.openairinterface.org/?page_id=466

http://mininet.org/walkthrough/
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet
https://github.com/mininet/mininet/wiki/Documentation
https://openmaniak.com/iperf.php
https://github.com/mininet/openflow-tutorial/wiki
https://technet.microsoft.com/en-us/windows-server-docs/networking/sdn/software-defined-networking
https://technet.microsoft.com/en-us/windows-server-docs/networking/sdn/software-defined-networking
http://www.openairinterface.org/?page_id=466

