
Electronics and Telecommunications Faculty, UPB Laboratory 5
Advanced Communications Networks, Protocols and Services

 1

Laboratory 5 OpenFlow Protocol

Part 1: POX Controller

POX is a Python-based SDN controller platform geared towards research and education. For

more details on POX, see the POX Wiki: https://openflow.stanford.edu/display/ONL/POX+Wiki/

Python:

 is a dynamic, interpreted language. There is no separate compilation step - just update

your code and re-run it.

 uses indentation rather than curly braces and semicolons to delimit code. Four spaces

denote the body of a for loop, for example.

 is dynamically typed. There is no need to pre-declare variables and types are

automatically managed.

 has built-in hash tables, called dictionaries, and vectors, called lists.

 is object-oriented and introspective. You can easily print the member variables and

functions of an object at runtime.

 runs slower than native code because it is interpreted. Performance-critical

controllers may want to distribute processing to multiple nodes or switch to a more

optimized language.

Common operations:

To initialize a dictionary:

 mactable = {}

To add an element to a dictionary:

 mactable[0x123] = 2

To check for dictionary membership:

if 0x123 in mactable:

print 'element 2 is in mactable'

 if 0x123 not in mactable:

print 'element 2 is not in mactable'

To print a debug message in POX:

 log.debug('saw new MAC!')

To print an error message in POX:

https://openflow.stanford.edu/display/ONL/POX+Wiki/

Electronics and Telecommunications Faculty, UPB Laboratory 5
Advanced Communications Networks, Protocols and Services

 2

 log.error('unexpected packet causing system meltdown!')

To print all member variables and functions of an object:

 print dir(object)

To comment a line of code:

 # Prepend comments with a #; no // or /**/

Sending OpenFlow messages with POX

connection.send(...) # send an OpenFlow message to a

switch

When a connection to a switch starts, a ConnectionUp event is fired. The example code

creates a new Tutorial object that holds a reference to the associated Connection object. This can

later be used to send commands (OpenFlow messages) to the switch.

ofp_action_output class

This is an action for use with ofp_packet_out and ofp_flow_mod. It specifies a

switch port that you wish to send the packet out of. It can also take various "special" port

numbers. An example of this would be OFPP_FLOOD which sends the packet out all ports except

the one the packet originally arrived on.

Example. Create an output action that would send packets to all ports:

out_action = of.ofp_action_output(port = of.OFPP_FLOOD)

ofp_match class

Objects of this class describe packet header fields and an input port to match on. All fields

are optional -- items that are not specified are "wildcards" and will match on anything.

Some notable fields of ofp_match objects are:

 dl_src - The data link layer (MAC) source address

 dl_dst - The data link layer (MAC) destination address

 in_port - The packet input switch port

Example. Create a match that matches packets arriving on port 3:

 match = of.ofp_match()

 match.in_port = 3

Electronics and Telecommunications Faculty, UPB Laboratory 5
Advanced Communications Networks, Protocols and Services

 3

ofp_packet_out OpenFlow message

The ofp_packet_out message instructs a switch to send a packet. The packet might be

one constructed at the controller, or it might be one that the switch received, buffered, and

forwarded to the controller (and is now referenced by a buffer_id).

Notable fields are:

 buffer_id - The buffer_id of a buffer you wish to send. Do not set if you are

sending a constructed packet.

 data - Raw bytes you wish the switch to send. Do not set if you are sending a

buffered packet.

 actions - A list of actions to apply (for this tutorial, this is just a single

ofp_action_output action).

 in_port - The port number this packet initially arrived on if you are sending by

buffer_id, otherwise OFPP_NONE.

Example. of_tutorial's send_packet() method:

 action = of.ofp_action_output(port = out_port)

 msg.actions.append(action)

 # Send message to switch

 self.connection.send(msg)

 ofp_flow_mod OpenFlow message

This instructs a switch to install a flow table entry. Flow table entries match some fields of

incoming packets, and executes some list of actions on matching packets. The actions are the

same as for ofp_packet_out, mentioned above (and, again, for the tutorial all you need is the

simple ofp_action_output action). The match is described by an ofp_match object.

Notable fields are:

 idle_timeout - Number of idle seconds before the flow entry is removed.

Defaults to no idle timeout.

 hard_timeout - Number of seconds before the flow entry is removed. Defaults

to no timeout.

 actions - A list of actions to perform on matching packets (e.g.,

ofp_action_output)

 priority - When using non-exact (wildcarded) matches, this specifies the

priority for overlapping matches. Higher values are higher priority. Not important

for exact or non-overlapping entries.

 buffer_id - The buffer_id of a buffer to apply the actions to immediately.

Leave unspecified for none.

 in_port - If using a buffer_id, this is the associated input port.

Electronics and Telecommunications Faculty, UPB Laboratory 5
Advanced Communications Networks, Protocols and Services

 4

 match - An ofp_match object. By default, this matches everything, so you

should probably set some of its fields!

Example. Create a flow_mod that sends packets from port 3 out of port 4.

 fm = of.ofp_flow_mod()

 fm.match.in_port = 3

 fm.actions.append(of.ofp_action_output(port = 4))

For more information about OpenFlow constants, see the main OpenFlow

types/enums/structs file, openflow.h, in ~/openflow/include/openflow/openflow.h You may also

wish to consult POX's OpenFlow library in pox/openflow/libopenflow_01.py and, of course, the

OpenFlow 1.0 Specification.

Parsing Packets with the POX packet libraries

The POX packet library is used to parse packets and make each protocol field available to

Python. This library can also be used to construct packets for sending.

The parsing libraries are in:

 pox/lib/packet/

Each protocol has a corresponding parsing file.

For the first exercise, you'll only need to access the Ethernet source and destination fields.

To extract the source of a packet, use the dot notation:

 packet.src

The Ethernet src and dst fields are stored as pox.lib.addresses.EthAddr objects. These can

easily be converted to their common string representation (str(addr) will return something like

"01:ea:be:02:05:01"), or created from their common string representation

(EthAddr("01:ea:be:02:05:01")).

To see all members of a parsed packet object:

 print dir(packet)

Here's what you'd see for an ARP packet:

 ['HW_TYPE_ETHERNET', 'MIN_LEN', 'PROTO_TYPE_IP', 'REPLY', 'REQUEST', 'REV_REPLY',

 'REV_REQUEST', '', '', '', '', '',

 '', '', '', '', '', '',

 '', '', '', '', '',

 '', '', '', '', '_init', 'err',

Electronics and Telecommunications Faculty, UPB Laboratory 5
Advanced Communications Networks, Protocols and Services

 5

 'find', 'hdr', 'hwdst', 'hwlen', 'hwsrc', 'hwtype', 'msg', 'next', 'opcode',

 'pack', 'parse', 'parsed', 'payload', 'pre_hdr', 'prev', 'protodst', 'protolen',

 'protosrc', 'prototype', 'raw', 'set_payload', 'unpack', 'warn']

Many fields are common to all Python objects and can be ignored, but this can be a quick

way to avoid a trip to a function's documentation.

Part 2. Practice

[https://github.com/mininet/openflow-tutorial/wiki/Create-a-Learning-Switch]

Step 1: Start Mininet network with POX remote controller

Build a network application based on POX Controller. You will use a starter code for a hub

controller. You'll modify the provided hub to act as an L2 learning switch. In this application,

the switch will examine each packet and learn the source-port mapping. Thereafter, the source

MAC address will be associated with the port. If the destination of the packet is already

associated with some port, the packet will be sent to the given port, else it will be flooded on

all ports of the switch.

Later, you'll turn this into a flow-based switch, where seeing a packet with a known source

and dest causes a flow entry to get pushed down.

We will start Mininet with a remote controller:

$ sudo mn --topo single,3 --mac --switch ovsk --controller remote

Go to POX folder:

$ cd pox

If pox is not installed, you can download it from the POX repository on github into your VM::

$ git clone http://github.com/noxrepo/pox

Now you can try running a basic hub example:

 $./pox.py log.level --DEBUG misc.of_tutorial

This tells POX to enable verbose logging and to start the of_tutorial component which you'll

be using (which currently acts like a hub).

The switches may take a little bit of time to connect. When an OpenFlow switch loses its connection

to a controller, it will generally increase the period between which it attempts to contact the

controller, up to a maximum of 15 seconds. Since the OpenFlow switch has not connected yet, this

delay may be anything between 0 and 15 seconds. If this is too long to wait, the switch can be

configured to wait no more than N seconds using the --max-backoff parameter. Alternately, you exit

Mininet to remove the switch(es), start the controller, and then start Mininet to immediately connect.

Electronics and Telecommunications Faculty, UPB Laboratory 5
Advanced Communications Networks, Protocols and Services

 6

Wait until the application indicates that the OpenFlow switch has connected. When the switch

connects, POX will print something like this:

 INFO:openflow.of_01:[Con 1/1] Connected to 00-00-00-00-00-01

 DEBUG:misc.of_tutorial:Controlling [00-00-00-00-00-01 1]

The first line is from the portion of POX that handles OpenFlow connections. The second is from

the tutorial component itself.

Step 2: Verify Hub Behavior with tcpdump

Now we verify that hosts can ping each other, and that all hosts see the exact same traffic - the

behavior of a hub. To do this, we'll create xterms for each host and view the traffic in each. In the

Mininet console, start up three xterms:

 mininet> xterm h1 h2 h3

Note: the xterm command does not work and will throw an error if you try to call it from the virtual

box directly, instead use another terminal window to call xterm.

In the xterms for h2 and h3, run tcpdump, a utility to print the packets seen by a host:

 # tcpdump -XX -n -i h2-eth0

and respectively:

 # tcpdump -XX -n -i h3-eth0

In the xterm for h1, send a ping:

 # ping -c1 10.0.0.2

The ping packets are now going up to the controller, which then floods them out all interfaces except

the sending one. You should see identical ARP and ICMP packets corresponding to the ping in both

xterms running tcpdump. This is how a hub works; it sends all packets to every port on the

network.

Now, see what happens when a non-existent host doesn't reply. From h1 xterm:

 # ping -c1 10.0.0.5

You should see three unanswered ARP requests in the tcpdump xterms. If your code is off later,

three unanswered ARP requests is a signal that you might be accidentally dropping packets.

Step 3: Benchmarking the POX hub

Here, you'll benchmark the provided of_tutorial hub.

Electronics and Telecommunications Faculty, UPB Laboratory 5
Advanced Communications Networks, Protocols and Services

 7

First, verify reachability. Mininet should be running, along with the POX hub in a second window.

In the Mininet console, run:

 mininet> pingall

This is just a sanity check for connectivity. Now, in the Mininet console, run:

 mininet> iperf

Now, compare your number with the reference controller you saw before. How does that compare?

Hint: every packet goes up to the controller now.

Step 3: Creating the learning switch

Go to your SSH terminal and stop the tutorial hub controller using Ctrl-C. The file you'll modify is

pox/misc/of_tutorial.py. Open this file in your favorite editor. Vim is a good choice, it

comes already downloaded with terminal. It has some funky commands to edit text so

http://vim.rtorr.com can be of use. To use vim, make sure you are in the correct directory

(pox/pox/misc) and enter:

 $ vi of_tutorial.py

The current code calls act_like_hub() from the handler for packet_in messages to

implement switch behavior. You'll want to switch to using the act_like_switch() function,

which contains a sketch of what your final learning switch code should look like.

Each time you change and save this file, make sure to restart POX, then use pings to verify the

behavior of the combination of switch and controller as a (1) hub, (2) controller-based Ethernet

learning switch, and (3) flow-accelerated learning switch. For (2) and (3), hosts that are not the

destination for a ping should display no tcpdump traffic after the initial broadcast ARP request.

To test your code: Make sure you have mininet running and then put ./pox.py log.level -

-DEBUG misc.of_tutorial in the other terminal window. Once it’s connected, try a couple

pings to see if the switch is working. The bandwidth returned by iperf from a switch (Gbits)

should be much faster than a hub (Mbits).

To test your controller-based Ethernet switch, first verify that when all packets arrive at the

controller, only broadcast packets (like ARPs) and packets with unknown destination locations (like

the first packet sent for a flow) go out all non-input ports. You can do this with tcpdump running

on an xterm for each host.

Electronics and Telecommunications Faculty, UPB Laboratory 5
Advanced Communications Networks, Protocols and Services

 8

Once the switch no longer has hub behavior, work to push down a flow when the source and

destination ports are known. You can use ovs-ofctl to verify the flow counters, and if subsequent

pings complete much faster, you'll know that they're not passing through the controller. You can

also verify this behavior by running iperf in Mininet and checking that no OpenFlow packet-in

messages are getting sent. The reported iperf bandwidth should be much higher as well, and

should match the number you got when using the reference learning switch controller earlier.

References:

 http://mininet.org/walkthrough/

 https://github.com/mininet/mininet/wiki/Introduction-to-Mininet

 https://github.com/mininet/mininet/wiki/Documentation

 https://openmaniak.com/iperf.php

 https://github.com/mininet/openflow-tutorial/wiki

http://mininet.org/walkthrough/
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet
https://github.com/mininet/mininet/wiki/Documentation
https://openmaniak.com/iperf.php
https://github.com/mininet/openflow-tutorial/wiki

