
Facultatea de Electronică şi Telecomunicaţii

Communications Network Laboratory 1

 1

Laboratory 1 Introduction to Netkit emulator

Part1. Netkit Emulator

What is Netkit emulator

Netkit is a network emulator based on user-uode uinux (uml). Each emulated network

device is a virtual linux box based on uml kernel. A user-mode linux process is also called

virtual machine (vm).

Each virtual machine has [1]:

• a console (a terminal window)

• a memory (“cut” into the memory of the host)

• a filesystem (stored in a single file of the host filesystem)

• (one or more) network interfaces

Each network interface can be connected to a (virtual) collision domain. Each virtual collision

domain can be connected to several interfaces. Each virtual machine can be configured to

play the role of a regular host, of a router, or a switch [1].

Netkit Commands

Netkit provides users with two sets of commands [1]:

• v-prefixed commands (vcommands) – configure and start a single virtual machine

• l-prefixed commands (lcommands) – environment to set up a complex lab.

Vcommands allow to startup virtual machines with arbitrary configurations:

• vstart: starts a new virtual machine

• vlist: lists currently running virtual machines

• vconfig: attaches network interfaces to running vms

• vhalt: gracefully halts a virtual machine

• vcrash: causes a virtual machine to crash

• vclean: “panic command” to clean up all netkit processes (including vms) and

configuration settings on the host machine

Lcommands allow to set up a complex lab consisting of several virtual machines:

• lstart: starts a netkit lab

• lhalt: gracefully halts all vms of a lab

• lcrash: causes all the vms of a lab to crash

• lclean: removes temporary files from a lab directory

• linfo: provides information about a lab without starting it

• ltest: allows to run tests to check that the lab is working properly

Preparing a Netkit lab

Emulating a network with Netkit is a matter of writing a simple file describing the link-level

topology of the network to be emulated and some configuration files that are identical to those

used by real world networking tools. Netkit then takes care of starting (emulated) network

devices and of interconnecting them as required.

Facultatea de Electronică şi Telecomunicaţii

Communications Network Laboratory 1

 2

A netkit lab is a set of preconfigured virtual machines that can be started or halted together.

A standard netkit lab is a directory tree containing (Figure 1):

• a lab.conf file describing the network topology

• a set of subdirectories that contain the configuration settings for each virtual

machine

• .startup and .shutdown files that describe actions performed by virtual machines

when they are started or halted

• [optionally] a lab.dep file describing dependency relationships on the startup order

of virtual machines

• [optionally] a _test directory containing scripts for testing that the lab is working

correctly

Figure 1: Netkit lab directory

Lab.conf

Lab.conf file is used to configure the network topology. It contrains [1]:

• the settings of the vms that make up a lab

• the topology of the network that interconnects the virtual machines of the lab

The file contains a list of assignments (Figure 2) with the format: machine[arg] = value

• machine is the name of the virtual machine (e.g., pc1)

• if arg is an integral number (say i), then value is the name of the collision domain to

which interface ethi should be attached

• if arg is a string, then it must be the name of a vstart option and value is the

argument (if any) to that option

Facultatea de Electronică şi Telecomunicaţii

Communications Network Laboratory 1

 3

Figure 2: lab.conf content for a given network topology [1]

Other optional assignments [1]:

• machines=“pc1 pc2 pc3…”: explicitly declare the virtual machines that make up

the lab

o by default, the existence of a subdirectory vm_name in the labdirectory implies

that a virtual machine vm_name is started

• LAB_DESCRIPTION

• LAB_VERSION

• LAB_AUTHOR

• LAB_EMAIL

• LAB_WEB

Lab subdirectories

Netkit starts a virtual machine for each subdirectory, with the same name of the

subdirectory itself

• unless lab.conf contains a machines= statement

The contents of subdirectory vm are mapped (=copied) into the root (/) of vm’s filesystem

Startup and Shutdown files

These files represent shell scripts that are used to tell virtual machines what to do when

starting and shutting down. Startup scripts are used to configure the network interfaces or to

start the network services.They are executed inside virtual machines.

• shared.startup and shared.shutdown affect all the virtual machines

• upon startup, a vm named vm_name runs

Facultatea de Electronică şi Telecomunicaţii

Communications Network Laboratory 1

 4

o shared.startup

o vm_name.startup

• upon shutdown, a vm named vm_name runs

o vm_name.shutdown

o shared.shutdown

Lab.dep

A lab.dep file inside the lab directory describes dependencies and automatically enables

parallel startup, e.g., “pc3 can only boot after pc2 and pc1 are up and running”.

• pc3: pc1 pc2

Launching/stopping a lab

The format for the command to launch or stop a lab is the following:

• lcommand -d <lab_directory> [machine...]

where lcommand can be one of the following:

• lstart, to start the lab

• lhalt, to gracefully shut down the virtual machines of a lab

• lcrash, to suddenly crash the virtual machines of a lab

Part 2: Basic network configuration with netkit

Basic network topologies and network nodes configuration for a better understanding of the

netkit environment will be performed in the experimental part of the lab.

Simple network with two hosts interconnected

In this activity two host will be started and will be connected to the same collision domain.

Their network interfaces will be configured in the same subnet: 192.168.1.0/24. The

connectivity between the machines will be tested with the ping command. The traffic

exchange will be analysed with dedicated programs (tcpdump and wireshark).

Network topology

The network topology is presented in Figure 3.

Figure 3: Network topology

C1 C2

eth0: 192.168.1.1 eth0: 192.168.1.2

collision domain

Facultatea de Electronică şi Telecomunicaţii

Communications Network Laboratory 1

 5

1. Creating the virtual machines

The virtual machines will be started using vstart command:

• vstart c1 –-eth0=A

• vstart c2 –-eth0=A

The machines c1 and c2 will be started with the network interface eth0 connected to the

same collision domain A.

2. Configure the network interfaces

Use ifconfig command to check which interfaces are up on both machines.

Configure the IP addresses given in Figure 1 on the eht0 interfaces on C1 and C2 machines

and bring them up using the ifconfig command:

• ifconfig eth0 ip_address_pc netmask netmask_pc up

where ip_address_pc and netmask_pc represent the IP address and the netmask of the

station (their values are given in Figure 3).

3. Test network connectivity with ping command

Use ping command to test network connectivity in both directions (Figure 4).

Figure 4: Successfully ping the C2 machine

4. Analyse the packets using tcpdump command and wireshark

Tcpdump is a network sniffer that is used to capture and analyse the packets exchanged

over the network. Use man command to see the documentation for tcpdump command:

• c1:~# man tcpdump

A fragment of the man command’s output is shown in Table 1. It presents optional parameters

that can be used with the command. With yellow are marked the ones that will be used:

• [-i interface] – specifies the interface to capture the packets

• [-s snaplen] – specifies the number of bytes captured per packet

• [-w file] – stores the pacjets to a file

Facultatea de Electronică şi Telecomunicaţii

Communications Network Laboratory 1

 6

TCPDUMP(8) System Manager’s Manual TCPDUMP(8)

NAME

 tcpdump – dump traffic on a network

SYNOPSIS

 tcpdump [-AbdDefhHIJKlLnNOpqStuUvxX#] [-B buffer_size]

 [-c count]

 [-C file_size] [-G rotate_seconds] [-F file]

 [-i interface] [-j tstamp_type] [-m module] [-M secret]

 [--number] [-Q in|out|inout]

 [-r file] [-V file] [-s snaplen] [-T type] [-w file]

 [-W filecount]

 [-E spi@ipaddr algo:secret,…]

 [-y datalinktype] [-z postrotate-command] [-Z user]

 [--time-stamp-precision=tstamp_precision]

 [--immediate-mode] [--version]

 [expression]

Table 1: Tcpdump command’s parameters

Capture the packets on interface eth0 on virtual machines c2 while the ping command is

used on virtual machine c1:

• c1:~#ping 192.168.1.2

• c2:~#tcpdump -i eth0

Q1: Analyze the pachets that are exchanged between the two virtual machines. What

protocol is used? Which are the packets sent in each direction?

Capture the packets with tcpdump and store them in a local file capture.pcap. The file

will be stored in the lab directory.

• c2:~#tcpdump -i eth0 -w filelocation/filename

filelocation/filename will be replaced with the appropriate path to lab directory and the

filename.

Open the file capture.pcap with Wireshark packet analyzer. Analyze the content of the

captured packets.

5. Generate the directory tree for the lab

Generate the same lab topology creating the associated directory tree. Generate the

topology using the lab.conf file. Configure the IP addresses on the eth0 interfaces using

the .startup files. Start the lab and check that the configurations are correct.

Facultatea de Electronică şi Telecomunicaţii

Communications Network Laboratory 1

 7

6. Topology for static routing

Generate the topology given in Figure 5. Use the directory tree to build the network

topology. Configure the tooilogy using lab.conf file. Use .startup files to configure the

IP addresses on each device.

Figure 5: Network topology for static routing

Verify using ping command that the communication between each directly connected

interface is working: c1 to c2; c1 to r1; c2 to r1, r1 to r2; etc.

Q2: Try to ping from r1 the IP address on eth1 interface on r1. Does it work? Why?

Check the routing tables on each device:

• c1:~#route -n

Add default gatway on c1, c2, c3:

• c1:~#route add default gw 192.168.1.3 dev eth0

• c2:~#...

• c3:~#...

Q3: Try to ping from c1 the IP address on eth1 interface on r1. Does it work? Why? Repeat

for c2. Ping from c3 the IP address on eth1 interface on r2.

C1 C2

eth0: 192.168.1.1 eth0: 192.168.1.2

collision domain A

192.168.1.0/24 eth0: 192.168.1.3

eth1: 10.10.1.1

eth1: 10.10.1.2

collision domain B

10.10.1.0/24

C3

r1

eth0: 192.168.2.1

eth0: 192.168.2.2

r2

collision domain C

192.168.2.0/24

Facultatea de Electronică şi Telecomunicaţii

Communications Network Laboratory 1

 8

Q4: Try to ping from c1 the IP address of c2. Does it work? Why?

Add static routes on r1 and r2:

• r1:~#route add -net 192.168.2.0 netmask 255.255.255.0 gw

10.10.1.2 dev eth1

• r2:~#...

Q5: Try to ping from c1 the IP address of c2. Does it work? Why?

Check the routing tables on each device.

References:

• http://wiki.netkit.org/netkit-labs/netkit_introduction/netkit-introduction.pdf

• http://wiki.netkit.org/netkit-labs/netkit-labs_basic-topics/netkit-lab_static-routing/netkit-

lab_static-routing.pdf

