Thinking in Java,
3rd Edition, Beta

Bruce Eckel, President,
MindView, Inc.

Planet PDF

Planet PDF brings you the Portable Document
Format (PDF) version of Thinking in Java. Planet
PDF is the premier PDF-related site on the web.
There is news, software, white papers, interviews,
product reviews, code samples, a forum, and
regular articles by many of the most prominent and
respected PDF experts in the world. Visit our sites
for more detalil:

http://www.planetpdf.com/
http://www.pdfstore.com/
http://www.binarything.com/

Click here to buy the paper version

http://www.planetpdf.com/
http://www.pdfstore.com/
http://www.binarything.com/
http://www.amazon.com/

Note: This document requires the installation of the fonts Georgia,
Verdana and Andale Mono (code font) for proper viewing. These can be
found at:

http://sourceforge.net/project/showfiles.php?group id=34153&release id=105355

Modifications in Revision 3.0 (unreleased)

¢ Reorganized chapters into their final form and numbering. Split
chapter 1 by moving “Analysis and design” to Chapter 16.

e Modified the description of the chapters in the introduction. (This
needs to be revisited again.

e Finished threading chapter. Dining philosophers problem added
to threading chapter.

e [Edited/rewrote chapters 1 - 11, 14 and Appendix A, B & D, which
went to production.

e Added Applet Signing and Java Web Start sections to “Creating
Windows and Applets.”

e Added examples showing threading in “Creating Windows and
Applets.”

¢ Added improved access control to most classes (more private
fields, in particular).

e Made general improvements throughout the code base.
e Changed cleanup() to dispose()

e Changed “friendly” to “package access”

¢ Changed “function” to “method” most places

e Added Preferences API section

e Removed Microsoft EULA (no longer needed for CD)

e Rewrote c14:ShowAddListeners.java to use regular expressions;
refactored

e Renamed “death condition” to “termination condition”

http://sourceforge.net/project/showfiles.php?group_id=34153&release_id=105355

Modifications in Revision 2.0 (9/13/2002)

Completed part of the rewrite of the threading chapter. This
simplifies the introduction to threading and removes all the GUI
examples, so that the threading chapter may be moved to appear
earlier in the book.

Reorganized material into reasonably final form, and assigned
chapter numbers. Chapters may still migrate.

Finished com.bruceeckel.simpletest framework and
integrated all test-instrumented examples back into the main
book. Added prose for testing system in Chapter 15. Also updated
most examples in book to reflect improvements in testing system.
Note: we are still refactoring this code to make it simpler. Stay
tuned.

Added sections on JDK 1.4 assertions, including design-by-
contract, to chapter 15.

Added JUnit introduction and example to chapter 15.
Changed “static inner class” to “nested class.”

Modified co4:Garbage.java so it wouldn’t fail on fast machines,
added description.

Moved BangBean2.java into the GUI chapter, since the non-
GUI threading chapter will now appear before the GUI chapter.

Modifications in Revision 1.0 (7/12/2002):

Changed to email-based BackTalk system, which is much simpler
to use and may be used while reading the document offline.

Added “Testing and Debugging” chapter, currently numbered 15.
This includes a simple testing system and an introduction to
JUnit, as well as a thorough introduction to Logging and an
introduction to using debuggers and profilers.

Added test framework to examples in the book. Not all examples
are fully tested yet, but most are at least executed. Comment flags

Todo:

on examples indicate the testing status of each. Significant change:
program output is displayed and tested directly in the source, so
readers can see what the output will actually be.

Change to Ant as the build tool, added package statements to
disambiguate duplicate names so Ant won’t complain. Running
Ant on the book not only compiles but also runs the
aforementioned tests.

HTML is now generated by a new tool called LogicTran
(http://www.Logictran.com). Still learning to use this one, so early
versions will be a bit rough.

Replaced Thread Group section in multithreading chapter.

Removed JNI appendix (available in the electronic 2n edition on
the CD or via download from www.MindView.net)

Removed Jini section (available in the electronic 214 edition on the
CD or via download from www.MindView.net)

Removed Corba section (available in the electronic 274 edition on
the CD or via download from www.MindView.net) after talking to
Dave Bartlett (Corba & XML expert), who observed that Corba has
gone quiet and everyone has gone up a level to the use of XML for
system integration instead of Corba.

Made a number of technical corrections suggested over the last 2
years. Most suggestions have been archived but not made yet.

Add “cloud of teachers, mentors, consultants” re: Larry’s
suggestion

Check for double spaces in text, replace () with (), correct em-
dashes — with —

Preface

Index

http://www.logictran.com/

Thinking
Java

Third Edition

Bruce Eckel

President, MindView, Inc.

DDOG

| i

333333333333

Comments from readers:

Much better than any other Java book I've seen. Make that “by an order of
magnitude”... very complete, with excellent right-to-the-point examples
and intelligent, not dumbed-down, explanations ... In contrast to many
other Java books I found it to be unusually mature, consistent,
intellectually honest, well-written and precise. IMHO, an ideal book for
studying Java. Anatoly Vorobey, Technion University, Haifa,
Israel

One of the absolutely best programming tutorials I've seen for any
language. Joakim Ziegler, FIX sysop

Thank you for your wonderful, wonderful book on Java. Dr. Gavin
Pillay, Registrar, King Edward VIII Hospital, South Africa

Thank you again for your awesome book. I was really floundering (being a
non-C programmer), but your book has brought me up to speed as fast as
I could read it. It’s really cool to be able to understand the underlying
principles and concepts from the start, rather than having to try to build
that conceptual model through trial and error. Hopefully I will be able to
attend your seminar in the not-too-distant future. Randall R. Hawley,
Automation Technician, Eli Lilly & Co.

The best computer book writing I have seen. Tom Holland

This is one of the best books I've read about a programming language...
The best book ever written on Java. Ravindra Pai, Oracle
Corporation, SUNOS product line

This is the best book on Java that I have ever found! You have done a
great job. Your depth is amazing. I will be purchasing the book when it is
published. I have been learning Java since October 96. I have read a few
books, and consider yours a “MUST READ.” These past few months we
have been focused on a product written entirely in Java. Your book has
helped solidify topics I was shaky on and has expanded my knowledge
base. I have even used some of your explanations as information in
interviewing contractors to help our team. I have found how much Java
knowledge they have by asking them about things I have learned from
reading your book (e.g., the difference between arrays and Vectors). Your

book is great! Steve Wilkinson, Senior Staff Specialist, MCI
Telecommunications

Great book. Best book on Java I have seen so far. Jeff Sinclair,
Software Engineer, Kestral Computing

Thank you for Thinking in Java. It’s time someone went beyond mere
language description to a thoughtful, penetrating analytic tutorial that
doesn’t kowtow to The Manufacturers. I've read almost all the others—
only yours and Patrick Winston’s have found a place in my heart. I'm
already recommending it to customers. Thanks again. Richard Brooks,
Java Consultant, Sun Professional Services, Dallas

Bruce, your book is wonderful! Your explanations are clear and direct.
Through your fantastic book I have gained a tremendous amount of Java
knowledge. The exercises are also FANTASTIC and do an excellent job
reinforcing the ideas explained throughout the chapters. I look forward to
reading more books written by you. Thank you for the tremendous service
that you are providing by writing such great books. My code will be much
better after reading Thinking in Java. I thank you and I'm sure any
programmers who will have to maintain my code are also grateful to you.
Yvonne Watkins, Java Artisan, Discover Technologies, Inc.

Other books cover the WHAT of Java (describing the syntax and the
libraries) or the HOW of Java (practical programming examples).
Thinking in Java is the only book I know that explains the WHY of Java;
why it was designed the way it was, why it works the way it does, why it
sometimes doesn’t work, why it’s better than C++, why it’s not. Although
it also does a good job of teaching the what and how of the language,
Thinking in Java is definitely the thinking person’s choice in a Java book.
Robert S. Stephenson

Thanks for writing a great book. The more I read it the better I like it. My
students like it, too. Chuck Iverson

I just want to commend you for your work on Thinking in Java. It is
people like you that dignify the future of the Internet and I just want to
thank you for your effort. It is very much appreciated. Patrick Barrell,
Network Officer Mamco, QAF Mfg. Inc.

Most of the Java books out there are fine for a start, and most just have
beginning stuff and a lot of the same examples. Yours is by far the best
advanced thinking book I've seen. Please publish it soon! ... I also bought
Thinking in C++ just because I was so impressed with Thinking in Java.
George Laframboise, LightWorx Technology Consulting, Inc.

I wrote to you earlier about my favorable impressions regarding your
Thinking in C++ (a book that stands prominently on my shelf here at
work). And today I've been able to delve into Java with your e-book in my
virtual hand, and I must say (in my best Chevy Chase from Modern
Problems) “I like it!” Very informative and explanatory, without reading
like a dry textbook. You cover the most important yet the least covered
concepts of Java development: the whys. Sean Brady

I develop in both Java and C++, and both of your books have been
lifesavers for me. If I am stumped about a particular concept, I know that
I can count on your books to a) explain the thought to me clearly and b)
have solid examples that pertain to what I am trying to accomplish. I have
yet to find another author that I continually whole-heartedly recommend
to anyone who is willing to listen. Josh Asbury, A*3 Software
Consulting, Cincinnati, OH

Your examples are clear and easy to understand. You took care of many
important details of Java that can’t be found easily in the weak Java
documentation. And you don’t waste the reader’s time with the basic facts
a programmer already knows. Kai Engert, Innovative Software,
Germany

I'm a great fan of your Thinking in C++ and have recommended it to
associates. As I go through the electronic version of your Java book, I'm
finding that you’ve retained the same high level of writing. Thank you!
Peter R. Neuwald

VERY well-written Java book...I think you've done a GREAT job on it. As
the leader of a Chicago-area Java special interest group, I've favorably
mentioned your book and Web site several times at our recent meetings. I
would like to use Thinking in Java as the basis for a part of each monthly
SIG meeting, in which we review and discuss each chapter in succession.
Mark Ertes

By the way, printed TIJ2 in Russian is still selling great, and remains
bestseller. Learning Java became synonym of reading TIJ2, isn't that
nice? Ivan Porty, translator and publisher of Thinking In Java
2nd Edition in Russian

I really appreciate your work and your book is good. I recommend it here
to our users and Ph.D. students. Hugues Leroy // Irisa-Inria Rennes
France, Head of Scientific Computing and Industrial Tranfert

OK, I've only read about 40 pages of Thinking in Java, but I've already
found it to be the most clearly written and presented programming book
I've come across...and I'm a writer, myself, so I am probably a little
critical. I have Thinking in C++ on order and can’t wait to crack it—I'm
fairly new to programming and am hitting learning curves head-on
everywhere. So this is just a quick note to say thanks for your excellent
work. I had begun to burn a little low on enthusiasm from slogging
through the mucky, murky prose of most computer books—even ones that
came with glowing recommendations. I feel a whole lot better now.
Glenn Becker, Educational Theatre Association

Thank you for making your wonderful book available. I have found it
immensely useful in finally understanding what I experienced as
confusing in Java and C++. Reading your book has been very satisfying.
Felix Bizaoui, Twin Oaks Industries, Louisa, Va.

I must congratulate you on an excellent book. I decided to have a look at
Thinking in Java based on my experience with Thinking in C++, and I
was not disappointed. Jaco van der Merwe, Software Specialist,
DataFusion Systems Ltd, Stellenbosch, South Africa

This has to be one of the best Java books I've seen. E.F. Pritchard,
Senior Software Engineer, Cambridge Animation Systems Ltd.,
United Kingdom

Your book makes all the other Java books I've read or flipped through
seem doubly useless and insulting. Brett g Porter, Senior
Programmer, Art & Logic

I have been reading your book for a week or two and compared to the
books I have read earlier on Java, your book seems to have given me a
great start. I have recommended this book to a lot of my friends and they

have rated it excellent. Please accept my congratulations for coming out
with an excellent book. Rama Krishna Bhupathi, Software
Engineer, TCSI Corporation, San Jose

Just wanted to say what a “brilliant” piece of work your book is. I've been
using it as a major reference for in-house Java work. I find that the table
of contents is just right for quickly locating the section that is required.
It’s also nice to see a book that is not just a rehash of the API nor treats
the programmer like a dummy. Grant Sayer, Java Components
Group Leader, Ceedata Systems Pty Ltd, Australia

Wow! A readable, in-depth Java book. There are a lot of poor (and
admittedly a couple of good) Java books out there, but from what I've
seen yours is definitely one of the best. John Root, Web Developer,
Department of Social Security, London

I've just started Thinking in Java. I expect it to be very good because I
really liked Thinking in C++ (which I read as an experienced C++
programmer, trying to stay ahead of the curve). I'm somewhat less
experienced in Java, but expect to be very satisfied. You are a wonderful
author. Kevin K. Lewis, Technologist, ObjectSpace, Inc.

I think it’s a great book. I learned all I know about Java from this book.
Thank you for making it available for free over the Internet. If you
wouldn’t have I'd know nothing about Java at all. But the best thing is
that your book isn’t a commercial brochure for Java. It also shows the bad
sides of Java. YOU have done a great job here. Frederik Fix, Belgium

I have been hooked to your books all the time. A couple of years ago, when
I wanted to start with C++, it was C++ Inside & Out which took me
around the fascinating world of C++. It helped me in getting better
opportunities in life. Now, in pursuit of more knowledge and when I
wanted to learn Java, I bumped into Thinking in Java—no doubts in my
mind as to whether I need some other book. Just fantastic. It is more like
rediscovering myself as I get along with the book. It is just a month since I
started with Java, and heartfelt thanks to you, I am understanding it
better now. Anand Kumar S., Software Engineer,
Computervision, India

Your book stands out as an excellent general introduction. Peter
Robinson, University of Cambridge Computer Laboratory

It’s by far the best material I have come across to help me learn Java and I
just want you to know how lucky I feel to have found it. THANKS! Chuck
Peterson, Product Leader, Internet Product Line, IVIS
International

The book is great. It’s the third book on Java I've started and I'm about
two-thirds of the way through it now. I plan to finish this one. I found out
about it because it is used in some internal classes at Lucent Technologies
and a friend told me the book was on the Net. Good work. Jerry Nowlin,
MTS, Lucent Technologies

Of the six or so Java books I've accumulated to date, your Thinking in
Java is by far the best and clearest. Michael Van Waas, Ph.D.,
President, TMR Associates

I just want to say thanks for Thinking in Java. What a wonderful book
you’ve made here! Not to mention downloadable for free! As a student I
find your books invaluable (I have a copy of C++ Inside Out, another great
book about C++), because they not only teach me the how-to, but also the
whys, which are of course very important in building a strong foundation
in languages such as C++ or Java. I have quite a lot of friends here who
love programming just as I do, and I've told them about your books. They
think it’s great! Thanks again! By the way, I'm Indonesian and I live in
Java. Ray Frederick Djajadinata, Student at Trisakti University,
Jakarta

The mere fact that you have made this work free over the Net puts me into
shock. I thought I'd let you know how much I appreciate and respect what
you're doing. Shane LeBouthillier, Computer Engineering
student, University of Alberta, Canada

I have to tell you how much I look forward to reading your monthly
column. As a newbie to the world of object oriented programming, I
appreciate the time and thoughtfulness that you give to even the most
elementary topic. I have downloaded your book, but you can bet that I will
purchase the hard copy when it is published. Thanks for all of your help.
Dan Cashmer, B. C. Ziegler & Co.

Just want to congratulate you on a job well done. First I stumbled upon
the PDF version of Thinking in Java. Even before I finished reading it, I
ran to the store and found Thinking in C++. Now, I have been in the

computer business for over eight years, as a consultant, software
engineer, teacher/trainer, and recently as self-employed, so I’d like to
think that I have seen enough (not “have seen it all,” mind you, but
enough). However, these books cause my girlfriend to call me a "geek.”
Not that I have anything against the concept—it is just that I thought this
phase was well beyond me. But I find myself truly enjoying both books,
like no other computer book I have touched or bought so far. Excellent
writing style, very nice introduction of every new topic, and lots of
wisdom in the books. Well done. Simon Goland,
simonsez@smartt.com, Simon Says Consulting, Inc.

I must say that your Thinking in Java is great! That is exactly the kind of
documentation I was looking for. Especially the sections about good and
poor software design using Java. Dirk Duehr, Lexikon Verlag,
Bertelsmann AG, Germany

Thank you for writing two great books (Thinking in C++, Thinking in
Java). You have helped me immensely in my progression to object
oriented programming. Donald Lawson, DCL Enterprises

Thank you for taking the time to write a really helpful book on Java. If
teaching makes you understand something, by now you must be pretty
pleased with yourself. Dominic Turner, GEAC Support

It’s the best Java book I have ever read—and I read some. Jean-Yves
MENGANT, Chief Software Architect NAT-SYSTEM, Paris,
France

Thinking in Java gives the best coverage and explanation. Very easy to
read, and I mean the code fragments as well. Ron Chan, Ph.D., Expert
Choice, Inc., Pittsburgh PA

Your book is great. I have read lots of programming books and your book
still adds insights to programming in my mind. Ningjian Wang,
Information System Engineer, The Vanguard Group

Thinking in Java is an excellent and readable book. I recommend it to all
my students. Dr. Paul Gorman, Department of Computer Science,
University of Otago, Dunedin, New Zealand

With your book, I have now understood what object oriented
programming means. ... I believe that Java is much more straightforward
and often even easier than Perl. Torsten Romer, Orange Denmark

You make it possible for the proverbial free lunch to exist, not just a soup
kitchen type of lunch but a gourmet delight for those who appreciate good
software and books about it. Jose Suriol, Scylax Corporation

Thanks for the opportunity of watching this book grow into a masterpiece!
IT IS THE BEST book on the subject that I've read or browsed. Jeff
Lapchinsky, Programmer, Net Results Technologies

Your book is concise, accessible and a joy to read. Keith Ritchie, Java
Research & Development Team, KL Group Inc.

It truly is the best book I've read on Java! Daniel Eng

The best book I have seen on Java! Rich Hoffarth, Senior Architect,
West Group

Thank you for a wonderful book. I'm having a lot of fun going through the
chapters. Fred Trimble, Actium Corporation

You have mastered the art of slowly and successfully making us grasp the
details. You make learning VERY easy and satisfying. Thank you for a
truly wonderful tutorial. Rajesh Rau, Software Consultant

Thinking in Java rocks the free world! Miko O’Sullivan, President,
Idocs Inc. Feedback

mailto:TIJ3@MindView.net?Subject=[TIJ3]Reader_Comments

About Thinking in C++:

Best Book! Winner of the
1995 Software Development Magazine Jolt Award!

“This book is a tremendous achievement. You owe it to yourself to
have a copy on your shelf. The chapter on iostreams is the most
comprehensive and understandable treatment of that subject I've seen
to date.”

Al Stevens

Contributing Editor, Doctor Dobbs Journal

“Eckel’s book is the only one to so clearly explain how to rethink
program construction for object orientation. That the book is also an
excellent tutorial on the ins and outs of C++ is an added bonus.”

Andrew Binstock
Editor, Unix Review

“Bruce continues to amaze me with his insight into C++, and Thinking
in C++ is his best collection of ideas yet. If you want clear answers to
difficult questions about C++, buy this outstanding book.”

Gary Entsminger
Author, The Tao of Objects

“Thinking in C++ patiently and methodically explores the issues of
when and how to use inlines, references, operator overloading,
inheritance, and dynamic objects, as well as advanced topics such as
the proper use of templates, exceptions and multiple inheritance. The
entire effort is woven in a fabric that includes Eckel’s own philosophy
of object and program design. A must for every C++ developer’s
bookshelf, Thinking in C++ is the one C++ book you must have if
you’re doing serious development with C++.”

Richard Hale Shaw
Contributing Editor, PC Magazine

Thinking

PH
PTR

Java

Third Edition

Bruce Eckel

President, MindView, Inc.

Prentice Hall
Upper Saddle River, New Jersey 07458
www.phptr.com

Library of Congress Cataloging-in-Publication Data
Eckel, Bruce.

Thinking in Java / Bruce Eckel.--3rd ed.

p. cm.

ISBN 0-13-100287-2

1. Java (Computer program language) I. Title.
QA76.73.J38E25 2003

005.13'3--dc21 00-037522

CIP

Acquisitions Editor: Paul Petralia

Editorial/Production Supervision: Nicholas Radhuber
Manufacturing Manager: Maura Zaldivar

Marketing Manager: Bryan Gambrel

Cover Design: Daniel Will-Harris

Interior Design: Daniel Will-Harris, www.will-harris.com

©2003 by Bruce Eckel, President, MindView, Inc.
Published by Pearson Education, Inc.

Publishing as Prentice Hall PTR

Upper Saddle River, NJ 07458

The information in this book is distributed on an “as is” basis, without warranty. While every precaution
has been taken in the preparation of this book, neither the author nor the publisher shall have any liability
to any person or entitle with respect to any liability, loss or damage caused or alleged to be caused directly
or indirectly by instructions contained in this book or by the computer software or hardware products
described herein.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without
permission in writing from the publisher.

Prentice Hall books are widely used by corporations and government agencies for training, marketing, and
resale. The publisher offers discounts on this book when ordered in bulk quantities. For more information,
contact the Corporate Sales Department at 800-382-3419, fax: 201-236-7141, email:
corpsales@prenhall.com or write: Corporate Sales Department, Prentice Hall PTR, One Lake Street,
Upper Saddle River, New Jersey 07458.

Java is a registered trademark of Sun Microsystems, Inc. Windows 95, Windows NT, Windows 2000 and
Windows XP are trademarks of Microsoft Corporation. All other product names and company names
mentioned herein are the property of their respective owners.

Printed in the United States of America
10987654321

ISBN 0-13-027363-5

Pearson Education LTD.

Pearson Education Australia PTY, Limited
Pearson Education Singapore, Pte. Ltd
Pearson Education North Asia Ltd
Pearson Education Canada, Ltd.

Pearson Educacién de Mexico, S.A. de C.V.
Pearson Education-Japan

Pearson Education Malaysia, Pte. Ltd

mailto:corpsales@prenhall.com

.I §3 Bruce Ecke/l’s
HARNDS-ON

LAY} \”’

SEMEERS

.,i 'ﬂ
Learn the programming language of thc World Wldc ch
aa
In this step-by-step introduction o This course is for you if
each carefully-chosen subject you can follow basic
, is covered in a lecture followed code examples written
i do by hands-on programming exercises. in C language syntax. _

Check www.BruceEckel.com
for in-depth details

and the date and location

of the next

Hands-On Java Seminar

Based on this book

Taught by the best MindView team members
Personal attention during the seminar
Includes in-class programming exercises
Intermediate/Advanced seminars also offered
Hundreds have already enjoyed this seminar—
see the Web site for their testimonials

-

/M;{E.ECKBL’S

$E SEMINA-ﬁ_ v_
= BOOI@-,.,
© LiNks

HELP

Bruce Eckel’'s Hands-On Java Seminar
Multimedia CD: 3™ edition follows this book
It’s like coming to the seminar!

Available at www.BruceEckel.com

» The Hands-On Java Seminar captured on a Multimedia CD!

» Overhead slides and synchronized audio voice narration for all
the lectures. Just play it to see and hear the lectures!

» Created and narrated by Bruce Eckel.
» Based on the material in this book.
> Demo lecture available at www.BruceEckel.com

Dedication

To the person who, even now,
is creating the next great computer language

Overview

Preface
Introduction
: Introduction to Objects
: Everything is an Object
: Controlling Program Flow
: Initialization & Cleanup

1
2
3
4
5: Hiding the Implementation
6: Reusing Classes

7: Polymorphism

8: Interfaces & Inner Classes

9: Error Handling with Exceptions
10: Detecting types

11: Collections of Objects

12: The Java I/O System

13: Concurrency

14: Creating Windows & Applets
15: Discovering problems

16: Analysis and design

A: Passing & Returning Objects

B: Java Programming Guidelines
C: Supplements

D: Resources

Index

11
35

117
177
231
257
297
335
395
449
481
615
709
779
929
1023
1049
1101
1117
1121
1129

What's Inside

Preface 1 {-)FJE-ECJ[creation, use &
Preface to the 31 edition..... 4 1 et1me§ 57
Preface to the 2n editionError! BookmarKHo¥aefitisd o - o8

The singly rooted hierarchy......... 60
JAVA 2 e 6))
The CD ROMccccceveuenneen. 8 Downcasting vs. templates/generics62
< Ensuring proper cleanup.............. 63

Introduction 11 Exception handling: dealing
Prerequisites.........ccceeuvennne 12 With €ITOTS e, 65
Learning Java........c.cc..... 12 CONCUITENCYvvvererrnenes 66
GoalS ..o 13 PersiStencCe. ..., 67
JDK HTML documentationis Java and the Internet........ 68
Chapters ----------------------------- 15 What is the Web?.........ccceeuennins 68
EXercises....ccceeeevvereeeernnnnnens 22 Client-side programming 70
Multimedia CD ROM 23 Server-side programming 78
Source code........ceureueunnee 23 Applications........ccecevvevvevererennencne 79

Coding standardscoeeeeveevenne 25 Why Java succeeds............ 79
Java versionscccceeueee. 26 Systems are easier to express and
Seminars and mentoring .20 understand.........ccoevveenenerererennen 80
13 (0) 7 27 Maximal leverage with libraries.. 80
Note on the cover design... 27 Error handling........cccceveiuerennnns 80
ACknOWIGdgements -------- 28 Programming in the large 81

1: Introduction to Objects 35 Java vs. C++2..iiieieeeennnnn. 81
The progress of abstraction36 SUMMATYceeveeeeerrenreennnnee 83

An object has an interface.39 2: Everything is an Object 85
An object provides services41 You manipulate objects with

The hidden implementation43 FEfErences ..ooeeeveeveereeeeenns 85
Reusing the implementation45 You must create all the
Inheritance: reusing the ODJECES e, 87
interface.......c.cocoeeeinnnnes 46 Where storage livesccveuene. 87
Is-a vs. is-like-a relationships...... 50 Special case: primitive types 89
Interchangeable objects AITaYS i JAVA ccooecenecrmcincieciecines 91

with polymorphism........... 52

Abstract base classes and interfaces56

You never need to destroy
an objectcocceeveevieevienenne. 91

Scoping
Scope of Objects....ccoeeevereereeennens 93
Creating new data types:
ClassS....coovveeeeeeeeeeeeeceees 94
Fields and methods............c........ 94
Methods, arguments, and
return values.........ccccceu...... 96
The argument list.......ccccevevueeenenne 98
Building a Java program...99
Name visibilityccccceveevienenennen. 99
Using other components............ 100
The static keyword..................... 101
Your first Java program..103
Compiling and running............... 105
Comments and embedded
documentation

SyntaX.....ccoeeeveenee

Embedded HTML.

Some example tags.........ceeeveunee. 110

Documentation example............. 112
Coding styleccceeeeuveenne 113
SUMMATYovvveeeeeeeereenannnns 114
EXercises.....cccceeveeeeenvnennn. 114

3: Controlling Program Flow

117

Using Java operators........ 117
Precedence 118
Assignmentceceeveenieniennennnenne 118
Mathematical operators.............. 122

Auto increment and decrement..126

Relational operators 127
Logical operatorscc.cecceveuenee. 129
Bitwise operatorsc.cccceeueeuee 132
Shift operatorsco.coeceeervenennen 134
Ternary if-else operator 138

The comma operator

String operator +ccccceceeueenee 139

Common pitfalls when using

OPETAtOTS....eeuereneereneerreneennenene 140
Casting operatorsc..ccccceueeee. 141
Java has no “sizeof”cccceeuene 144
Precedence revisited................... 145
A compendium of operators....... 145
Execution control............. 156

4: Initialization & Cleanup

177
Guaranteed initialization
with the constructor-......... 177
Method overloading......... 180

Distinguishing overloaded methods183

Overloading with primitives....... 184

Overloading on return values.....190

Default constructors................... 190
The this keywordccceeeennnne 191
Cleanup: finalization and
garbage collection............ 196
What is finalize() for? 197
You must perform cleanup......... 198
The termination condition......... 199

How a garbage collector works ..201
Member initialization......205

Specifying initialization............. 206

Constructor initialization 208

Multidimensional arrays............ 222
SUMMAarycceeeeeeeereennneen. 225
EXErcises.....ccceeevveeeeeennnenn. 226

5: Hiding the
Implementation 231

package: the library unit.232

Creating unique package names 235

A custom tool library 239
Using imports to change behavior240
Package caveatccccceeverrennennne. 241
Java access specifiers...... 241
Package accesscocceveeeerrennenennes 241
public: interface access 242

private: you can’t touch that!... 244
protected: inheritance access.. 246
Interface and

implementation............... 248
Class access......cccevveeennenn. 250
SUMMATY ...ceeeeeerrereerrnnnnes 253
EXErcisSes....ccccceveeeeeeeennnns 255
6: Reusing Classes 257
Composition syntax......... 257
Inheritance syntax........... 261
Initializing the base class........... 264
Combining composition and
inheritance..........cc........... 267
Guaranteeing proper cleanup.... 269
Name hiding.......cocceeververenenenne. 273
Choosing composition vs.
inheritance......cccccuveeenne. 274
protected........cceeueeruennnenn. 276
Incremental development278
Upcasting.......ccoevveereenenenn. 279
Why “upcasting”?.......cccceceeeeveneee 280
The final keyword 281
Final data 281

Final methods.......cccceeevueruennnne 286
Final classes 289
Final caution........ccceeeveeveeneennns 290
Initialization and class
loadingccceeeuveeerrenneen. 201
Initialization with inheritance.... 291
SUMMATY ...eveeeeeriereernrnnnns 203
EXErcises......coovveveeeeeeenne. 204
7: Polymorphism 297
Upcasting revisited.......... 297
Forgetting the object type 300
The twist .cccoveveeeerrereeennns 301
Method-call binding.................. 302
Producing the right behavior303
Extensibility.......ccoceveveerenenenne 306
Pitfall: “overriding” private
mMethods ...cveecveeeveecieecieeieeeens 310
Abstract classes and
methodseevevveveereeennnen. 311
Constructors and
polymorphism 315
Order of constructor calls........... 316
Inheritance and cleanup............. 318

Behavior of polymorphic methods

inside constructorsc.eeeveene. 322
Designing with inheritance325

Pure inheritance vs. extension ...326

Downcasting and run time type

identificationcccceevveeeveecreennes 329
SUMMATY ..oeveeeeerirreerrrnnnns 331
EXErcises.....ccovvvveveeeeeeennn. 331

8: Interfaces & Inner Classes

335
Interfaces.....ccccceevrvereeennnne 335

“Multiple inheritance” in Java .. 340
Extending an interface with

inheritance........ccceeveeveecveecreennes 344

Grouping constants.................... 345
Initializing fields in interfaces ... 348
Nesting interfacescccceeueee. 349
Inner classes......cccoouunnnene. 352
Inner classes and upcasting....... 354

Inner classes in methods and

SCOPES ceveveeverreeeneerersenseeeessensenees
Anonymous inner classes ...
The link to the outer class...

Nested classesccceeeveevveerevennnnn.

Referring to the outer class object368
Reaching outward from a multiply-
nested classcoceeeeereeveereennenns 370
Inheriting from inner classes...... 371
Can inner classes be overridden?371

Local inner classescceeeveenen

Inner class identifiers

Why inner classes?........... 376
Closures & Callbacks.................. 379
Inner classes & control frameworks382
SUMMATY ...evveeeeereraeennnnnes 390
EXercises.....ccccceeeeeeeecnnnns 390
9: Error Handling with
Exceptions 395

Basic exceptions

Exception arguments....

Catching an exception.....398
The try block.........ccceeeveviereennnns 399
Exception handlers............c........ 399

Creating your own

eXCeptions.....cccceeveeeeueennne 401

The exception specification405
Catching any exception...407
409
Exception chainingc..c......... 413
Standard Java exceptions 417

Rethrowing an exception

The special case of

RuntimeException................. 417
Performing cleanup with
finallycooevveeeeieeiieenns 420

What'’s finally for?.........cccccc.c.. 421

Pitfall: the lost exception............ 424
Exception restrictions426
Constructors.......ccceeeeeeees 429
Exception matching 433
Alternative approaches ...435

HiStory ..eeeeeeeeeieeececeeceeeeee 436

Perspectives.......ccoceeeevvenuenennnenne 438

Passing exceptions to the console441

Converting checked to unchecked

€XCEPIONS ...covveeneireeeeieieneneene 442
Exception guidelines....... 445
SUMMATY ..vvveeeeeriereerirnnnnes 445
EXercises....cccceveeevvveeeeeenns 446

10: Detecting types 449
The need for RTTI........... 449

The Class objectccccevvevuenene 452

Checking before a cast................ 456
RTTI syntax.....cccceeenneeenee 468
Reflection: run time class
information......cccceeeeennens 471

A class method extractor-............ 473
SUMMATY ..ovveeeeeriereerrrnnnnns 477
EXercises.....ccceveeevvveeeeeenns 478

Returning an array
The Arrays class......c.ccccevevuenene
Filling an arrayc..cececcevevvenuenene

Copying an arrayc..cceceeeeeeenee

Comparing arraysc..ceeeeeeeene

Array element comparisons........ 501
Sorting an arrayceeeeeeeeeene 505
Searching a sorted array............ 507
ATray SUMMATY ...coceeeveeneennneene 509

Introduction to containers509

Printing containersccc..... 511

Filling containers........c..ccccceuee..e. 513
Container disadvantage:
unknown type.........c....... 520

Sometimes it works anyway....... 523

Making a type-conscious

ArrayList........cccocevevevenenenenne 525
Iterators.....cccceveeeeeerennnnee. 526
Container taxonomy........ 531
Collection functionality 535
List functionality 539

Making a stack from a LinkedList543
Making a queue from a LinkedList544

Set functionality 545
SortedSet..........ccocoeveiiinennennen. 548
Map functionality........... 550
SortedMap.........cccceceeuenueenennen. 556
LinkedHashMap.................... 558
Hashing and hash codes............. 559
Overriding hashCode() 570
Holding references.......... 575
The WeakHashMap 578
Iterators revisited........... 580
Choosing an implementation581
Choosing between Lists 582
Choosing between Sets.............. 585
Choosing between Maps............ 588

Sorting and searching Lists592

UtLES v, 593
Making a Collection or Map
unmodifiable.........ccoeevvveereennnenn. 596

Synchronizing a Collection or

Unsupported operations.599
Java 1.0/1.1 containers... 602

Vector & Enumeration 602

12: The Java I/O System 615

The File class..........cuue.... 616

A directory lister......cc.ccceeueuenne. 616
Checking for and creating

directories.coceververeererreruenueenne
Input and output..............

Types of InputStream

Types of OutputStream 625
Adding attributes and useful
Interfacesoccceeeeevvereeennns 627

Reading from an InputStream
with FilterInputStream......... 628
Writing to an OutputStream with
FilterOutputStream
Readers & Writers

Sources and sinks of data

Modifying stream behavior 633

Unchanged Classes.........cccceeueuee 635
Off by itself:
RandomAccessFile........... 635
Typical uses of I/O streams636

Input streamsccccccceeeeeeeenneen. 639

Output streams.......cccccevueevueennen. 641

Piped streams
Standard I/O
Reading from standard input.....646

Changing System.out to a

PrintWriter...........ccocoeeveenene 647

Redirecting standard I/0........... 647
Compression...........ce....... 649

Simple compression with GZIP . 652

Multifile storage with Zip 654
Java ARchives (JARS)................ 656
Object serialization 659
Finding the classccccceveeueuenee 663
Controlling serialization 665
Using persistence...........cccceu.e.... 675
Regular expressions......... 682
Creating regular expressions..... 685
Quantifiersccoceeevveerreereernenns 687
Pattern and Matcher-.................. 689
split() 698
Replace operations..................... 699
TESEL() veevrreereeireeeieereereeereeneens 702
Capturing Groupsc.cceceeueeee. 692

Regular expressions and Java I/0703

Is StringTokenizer needed? 704

SUMMATY ...ceeveeerrereernnnnnnes 705
EXercises.....ccccceeeeeeeennnnes 706
13: Concurrency 709
Motivationccceeeeeenn... 710
Basic threads..................... 711
Yeildingooveeieniininiiiiciceene 714
Sleeping.... ..716
PrioTity coveeevveereenierieenienieeseenne 718
Daemon threads........cccceeveevennen 721
Joining a threadcoceveeuennne 724
Coding variations.........ce.ceevenene 726

Creating responsive user interfaces732

Sharing limited resources734

Improperly accessing resources 734
Colliding over resources 739

Resolving shared resource

contentioncceeeveeeeiveeeeinneennns 742
Critical sections.........cccceeeverunenne 750
Thread states.........c......... 756
Becoming blocked........c.ccccoueuenne 756

Cooperation between
threads.....cccovvveeeenveeeennnns 757
Wait and notifycccceeveeeneennne. 757

Using Pipes for I0 between threads762

More sophisticated cooperation.764
Deadlock..........cccuveennenn. 764
The proper way to stop....770
Interrupting a blocked

thread.......ccoeeeeuveeecnreennee. 771
Thread groups 773
SUMMATY ..oeveeeeeeiereeenrnnnns 773
EXercises....ccccceeeevvveeeenns 775
14: Creating Windows &
Applets 779
The basic applet............... 782
Applet restrictions.......cccceeeeeueene 782
Applet advantages
Application frameworks.............. 784
Running applets inside a Web
DIOWSET .vveevveevrerreeteeeteeetreeaeens 786
Using Appletviewer-.................... 788
Testing applets.......coceveveeenvenennes 789
Running applets from the
command line.................. 790
A display framework..........c........ 792
Making a button............... 794
Capturing an event.......... 795
Text areas......cccevevueeeeninnnne
Controlling layout
BorderLayout........cccceeeeeervenenene
FlowLayoutcccceeeeruereeuennen.
GridLayout.......ceceeervereeerennennene
GridBagLayoutcccceeerveruenene
Absolute positioning..
BoxLayout......ccoeeeveeirieriuenineennne
The best approach?.................... 808

The Swing event model.. 809

Event and listener types

Tracking multiple events............. 817
A catalog of Swing
COMPONENtS ..cceevrrerennnnnee 820
Buttons.......ccovivviiiiiiniinniinnninn, 821
| (0] 4 USRS 824
TOOL tIPS...ceoeeeeerieieneeieieneeeene 826
Text fieldS...coceveverererenercreeenne. 826
BOTAEIS..uveeveeeeeeeveeereeereeeveeenreens 829
JScrollPanes........ccceeeveereeernennnen. 830
A mini-editor.......cccceceevienenreennen. 832
Check boXeS....uveeveeeeevreerreennenns 833
Radio buttons.......c.ccecceveevenennee. 835
Combo boxes (drop-down lists). 836
LiSt DOXES .vvvevvereeerveereerreeneeens 838
Tabbed panesccccceeevueuennne. 840

Message boxes....

Menus.......... ..843
Pop-up menus. 850
Drawing.....ecceceeeeverveneeneeeneneenens 852
Dialog BOXES.....coverueverereneereenene 855
File dialogscc.cevvevveeeeeenenncnne. 860
HTML on Swing components.... 862
Sliders and progress bars........... 863
TIEES . cccveeeeeeeeeieeeeeeeeeree e 864
Tables c..covvereerieieneeeeieneeeeaenne 867
Selecting Look & Feel................. 869
The clipboardcccceceeverenenne 872
Packaging an applet into a
JARSAile oo, 875
Signing applets................. 876

JNLP and Java Web Start881

Programming techniques887
Binding events dynamically....... 888
Separating business logic from UI

...890

....893
Concurrency & Swing......893

A canonical form...

Runnable revisited

Managing concurrency............... 897
Visual programming and
Beansccoeevvevvneeeeeennnnns 901

What is a Bean?cccccceveeinne 902

Extracting BeanInfo with the
Introspectorcccccceeeunee 905
A more sophisticated Bean.......... 911

JavaBean and synchronization .. 915

Packaging a Bean..........c.ccc...... 920
More complex Bean support...... 922
More to Beans........ccceeeeeeecnvnnnenns 923
SUMMATY ...cveeeeeriereerrrnnnns 023
EXErcises......coovveveeeeeeenn. 924

15: Discovering problems

929
Unit Testing......cccccueeenneee. 931
A Simple Testing Framework.....934

Improving reliability with
ASSErtionsS.....covvvveeeeeeeeennne. 951
Assertion Syntaxcceceeveerueenne 952

Using Assertions for Design by

CONETACL ...ueeneeeeeeeeeeeeeeeenen. 955
Example: DBC + white-box unit
TESHING .evveeneeieeeieeeeeeeeeeen 960
Building with Ant 966
Automate everything.................. 966
Problems with make................. 967
Ant: the defacto standard.......... 968
Version control with CVS........... 973
Daily builds......cceveverenieerenienen. 976
| 70724241 s V- S 977
Logging Levels......ccccoceveeerenuenene 979
LOZRECOTdS ...cuvvevevenreierrereenaeaens 982
Handlersccccocveverenvienenennnen. 984

Filters

Formatters.......ccccceeeeeneeeeenninnnnee 991
Example: Sending email to report
10g MESSAZES....eovervenrererrenreeenennen 992

Controlling Logging Levels through

Namespacesccceeeeeeeeevveeecuneene 995

Logging Practices for Large Projectsggy Ob] ects

SUMMATY .cceveeieenieneeeneeneeenees 1001
Debugging..........cccueeuee. 1001

Debugging with JDB

Graphical debuggers
Profiling and optimizing1008

Tracking memory consumption1009

Tracking CPU usage................. 1009
Coverage testing........ccoceveeveuenne. 1010
JVM Profiling Interface............. 1010
Using HPROF........cccccevenenenne
Thread performance
Optimization guidelines............ 1014
| D16 T6) (<] £ J 1015
SUMMATYcvveeeeeerreeennnns 1018
EXercises.....cccceceeeeeeeennns 1020
16: Analysis and design 1023
Methodology.................. 1023
Phase 0: Make a plan1026
The mission statement............. 1026
Phase 1: What are we
making?ccccceeeveenen. 1027
Phase 2: How will we build
IE? e 1031

Five stages of object design...... 1034

Guidelines for object development1035

Phase 3: Build the core..1036

Phase 4: Iterate the use cases103;

Phase 5: Evolution......... 1038
Plans pay off 1040
Extreme programming..1040

Write tests first.......ccoeveevveerveennns 1041

Pair programming.................... 1043

Strategies for transition 1044

Guidelines.......oceveveevienennenee. 1044
Management obstacles............. 1046
SUMMArYcceeevrereernnnne 1048

A: Passing & Returning
1049

Passing references around1050

ALASING ..o 1051
Making local copies....... 1053
Pass by value.......ccccecvevvenennennee. 1054
Cloning objectsccceeerverenen. 1055

Adding cloneability to a class... 1056
Successful cloningc.c.ce.... 1059
The effect of Object.clone() . 1061
Cloning a composed object....... 1063
A deep copy with ArrayList ...1066
Deep copy via serialization....... 1068

Adding cloneability further down a

hierarchy.......cccceeveeveevieneneenenne. 1071
Why this strange design? 1072
Controlling cloneability. 1073
The copy constructor................ 1078
Read-only classes........... 1084
Creating read-only classes........ 1086

The drawback to immutability . 1087

Immutable Strings.................. 1089
The String and StringBuffer
ClASSES uveevreeereereeereeee e eeeene 1093
Strings are special................... 1097
SuMmMarycceeeeeereeennnn 1098
EXercises.....cccceeecveeennn.. 1099
B: Java Programming
Guidelines 1101
Designccveeveveeecreennnen. 1101
Implementation............. 1108

C: Supplements 1117 Thinking in Patterns

Foundations for Java Seminar......coeeeeeeeeeeeeennnn. 1119
seminar-on-CD............... 1117 Design Consulting, Reviews
Hands-On Java seminar-on- and Walkthroughs 1119
CD gt edition 1118 D: Resources 1121
Th%nking %n Java Seminar1118 Software........ccceevevererennne 1121
Thinking in Enterprise Javar118 O 1121
Demgnlng Ob-] ects & Systems Analysis & design..........ccccevvunee 1122
Seminarcccceeeeeeeeeennnnn. 1119

o : ; Python......ccceeveevieneniiiinceceene 1125
Thlnklng in Patterns with My own list of books.................. 1126
JaAVA .ottt 1119

Preface

I suggested to my brother Todd, who is making the leap
from hardware into programming, that the next big
revolution will be in genetic engineering.

We’ll have microbes designed to make food, fuel, and plastic; they’ll clean
up pollution and in general allow us to master the manipulation of the
physical world for a fraction of what it costs now. I claimed that it would
make the computer revolution look small in comparison. Feedback

Then I realized I was making a mistake common to science fiction writers:
getting lost in the technology (which is of course easy to do in science
fiction). An experienced writer knows that the story is never about the
things; it’s about the people. Genetics will have a very large impact on our
lives, but I'm not so sure it will dwarf the computer revolution (which
enables the genetic revolution)—or at least the information revolution.
Information is about talking to each other: yes, cars and shoes and
especially genetic cures are important, but in the end those are just
trappings. What truly matters is how we relate to the world. And so much
of that is about communication. Feedback

This book is a case in point. A majority of folks thought I was very bold or
a little crazy to put the entire thing up on the Web. “Why would anyone
buy it?” they asked. If I had been of a more conservative nature I wouldn’t
have done it, but I really didn’t want to write another computer book in
the same old way. I didn’t know what would happen but it turned out to
be the smartest thing I’'ve ever done with a book. Feedback

For one thing, people started sending in corrections. This has been an
amazing process, because folks have looked into every nook and cranny
and caught both technical and grammatical errors, and I've been able to
eliminate bugs of all sorts that I know would have otherwise slipped
through. People have been simply terrific about this, very often saying
“Now, I don’t mean this in a critical way...” and then giving me a
collection of errors I'm sure I never would have found. I feel like this has

mailto:TIJ3@MindView.net?Subject=[TIJ3]Preface_1
mailto:TIJ3@MindView.net?Subject=[TIJ3]Preface_2
mailto:TIJ3@MindView.net?Subject=[TIJ3]Preface_3

been a kind of group process and it has really made the book into
something special. Because of the value of this feedback, I have created
several incarnations of a system called “BackTalk” to collect and
categorize comments, Feedback

But then I started hearing “OK, fine, it’s nice you’ve put up an electronic
version, but I want a printed and bound copy from a real publisher.” I
tried very hard to make it easy for everyone to print it out in a nice looking
format but that didn’t stem the demand for the published book. Most
people don’t want to read the entire book on screen, and hauling around a
sheaf of papers, no matter how nicely printed, didn’t appeal to them
either. (Plus, I think it’s not so cheap in terms of laser printer toner.) It
seems that the computer revolution won’t put publishers out of business,
after all. However, one student suggested this may become a model for
future publishing: books will be published on the Web first, and only if
sufficient interest warrants it will the book be put on paper. Currently, the
great majority of all books are financial failures, and perhaps this new
approach could make the publishing industry more profitable. Feedback

This book became an enlightening experience for me in another way. I
originally approached Java as “just another programming language,”
which in many senses it is. But as time passed and I studied it more
deeply, I began to see that the fundamental intention of this language was
different from other languages I had seen up to that point. Feedback

Programming is about managing complexity: the complexity of the
problem you want to solve, laid upon the complexity of the machine in
which it is solved. Because of this complexity, most of our programming
projects fail. And yet, of all the programming languages of which I am
aware, none of them have gone all-out and decided that their main design
goal would be to conquer the complexity of developing and maintaining
programs?. Of course, many language design decisions were made with
complexity in mind, but at some point there were always some other
issues that were considered essential to be added into the mix. Inevitably,
those other issues are what cause programmers to eventually “hit the

171 take this back on the 21 edition: I believe that the Python language comes closest to
doing exactly that. See www.Python.org.

Thinking in Java www.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Preface_3A
mailto:TIJ3@MindView.net?Subject=[TIJ3]Preface_4
mailto:TIJ3@MindView.net?Subject=[TIJ3]Preface_5

wall” with that language. For example, C++ had to be backwards-
compatible with C (to allow easy migration for C programmers), as well as
efficient. Those are both very useful goals and account for much of the
success of C++, but they also expose extra complexity that prevents some
projects from being finished (certainly, you can blame programmers and
management, but if a language can help by catching your mistakes, why
shouldn’t it?). As another example, Visual Basic (VB) was tied to BASIC,
which wasn’t really designed to be an extensible language, so all the
extensions piled upon VB have produced some truly horrible and
unmaintainable syntax. Perl is backwards-compatible with Awk, Sed,
Grep, and other Unix tools it was meant to replace, and as a result is often
accused of producing “write-only code” (that is, after a few months you
can’t read it). On the other hand, C++, VB, Perl, and other languages like
Smalltalk had some of their design efforts focused on the issue of
complexity and as a result are remarkably successful in solving certain
types of problems. Feedback

What has impressed me most as I have come to understand Java is that
somewhere in the mix of Sun’s design objectives, it appears that there was
the goal of reducing complexity for the programmer. As if to say “we care
about reducing the time and difficulty of producing robust code.” In the
early days, this goal resulted in code that didn’t run very fast (although
there have been many promises made about how quickly Java will
someday run) but it has indeed produced amazing reductions in
development time; half or less of the time that it takes to create an
equivalent C++ program. This result alone can save incredible amounts of
time and money, but Java doesn’t stop there. It goes on to wrap many of
the complex tasks that have become important, such as multithreading
and network programming, in language features or libraries that can at
times make those tasks easy. And finally, it tackles some really big
complexity problems: cross-platform programs, dynamic code changes,
and even security, each of which can fit on your complexity spectrum
anywhere from “impediment” to “show-stopper.” So despite the
performance problems we’ve seen, the promise of Java is tremendous: it
can make us significantly more productive programmers. Feedback

One of the places I see the greatest impact for this is on the Web. Network
programming has always been hard, and Java makes it easy (and the Java
language designers are working on making it even easier). Network

Preface 3

mailto:TIJ3@MindView.net?Subject=[TIJ3]Preface_6
mailto:TIJ3@MindView.net?Subject=[TIJ3]Preface_7

programming is how we talk to each other more effectively and cheaper
than we ever have with telephones (email alone has revolutionized many
businesses). As we talk to each other more, amazing things begin to
happen, possibly more amazing even than the promise of genetic
engineering. Feedback

In all ways—creating the programs, working in teams to create the
programs, building user interfaces so the programs can communicate
with the user, running the programs on different types of machines, and
easily writing programs that communicate across the Internet—Java
increases the communication bandwidth between people. I think that the
results of the communication revolution may not be seen from the effects
of moving large quantities of bits around; we shall see the true revolution
because we will all be able to talk to each other more easily: one-on-one,
but also in groups and, as a planet. I've heard it suggested that the next
revolution is the formation of a kind of global mind that results from
enough people and enough interconnectedness. Java may or may not be
the tool that foments that revolution, but at least the possibility has made
me feel like I'm doing something meaningful by attempting to teach the
language. Feedback

Preface to the 3™ edition

Much of the motivation and effort in this edition is to bring the book up to
date with the Java JDK 1.4 release of the language. However, it has also
become clear that most readers use the book to get a solid grasp of the
fundamentals so that they can move on to more complex topics. Because
the language continues to grow, it became necessary—partly so that the
book would not overstretch its bindings—to re-evaluate the meaning of
“fundamentals.” This meant, for example, completely rewriting the
“Concurrency” chapter (formerly called “Multithreading”) so that it gives
you a basic foundation in the core ideas of threading. Without that core,
it’s hard to understand more complex issues of threading. Feedback

I have also come to realize the importance of code testing. Without a
built-in test framework with tests that are run every time you do a build of
your system, you have no way of knowing if your code is reliable or not.

To accomplish this in the book, a special unit testing framework was

4 Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Preface_8
mailto:TIJ3@MindView.net?Subject=[TIJ3]Preface_9
mailto:TIJ3@MindView.net?Subject=[TIJ3]A0655

created to show and validate the output of each program. This was placed
in chapter 15, a new chapter, along with explanations of ant (the defacto
standard Java build system, similar to make), JUnit (the defacto standard
Java unit testing framework), and coverage of logging and assertions (new
in JDK 1.4) along with an introduction to debugging and profiling. To
encompass all these concepts, the new chapter is named “Discovering
Problems,” and it introduces what I now believe are fundamental skills
that every Java programmer should have in their basic toolkit. Feedback

In addition, I've gone over every single example in the book, and asked
myself “why did I do it this way?” and in most cases I have done some
modification and improvement, both to make the examples more
consistent within themselves and also to demonstrate what I consider to
be best practices in Java coding (at least, within the limitations of an
introductory text). Examples that no longer made sense to me were
removed, and new examples have been added. A number of the existing
examples have had very significant redesign and reimplementation. Feedback

The 16 chapters in this book produce what I think is a fundamental
introduction to the Java language. The book can be feasibly used as an
introductory course. But what about the more advanced material? Feedback

The original plan for the book was to add a new section covering the
fundamentals of the “Java 2 Enterprise Edition” (J2EE). Many of these
chapters would be created by my friends and associates who work with me
on seminars and other projects, such as Andrea Provaglio, Bill Venners,
Chuck Allison, Dave Bartlett and Jeremy Meyer. When I looked at the
progress of these new chapters, and the book deadline, I began to get a bit
nervous. Then I noticed that the size of the first 16 chapters was effectively
the same as the size of the 2rd edition of the book. And people sometimes
complain this is already too big. Feedback

Readers have made many, many wonderful comments about the first two
editions of this book, which has naturally been very pleasant for me.
However, every now and then someone will have complaints, and for
some reason one complaint that comes up periodically is “the book is too
big.” In my mind it is faint damnation indeed if “too many pages” is your
only gripe. (One is reminded of the Emperor of Austria’s complaint about
Mozart’s work: “Too many notes!” Not that I am in any way trying to

Preface 5

mailto:TIJ3@MindView.net?Subject=[TIJ3]A0656
mailto:TIJ3@MindView.net?Subject=[TIJ3]A0657
mailto:TIJ3@MindView.net?Subject=[TIJ3]A0658
mailto:TIJ3@MindView.net?Subject=[TIJ3]A0659

compare myself to Mozart.) In addition, I can only assume that such a
complaint comes from someone who is yet to be acquainted with the
vastness of the Java language itself, and has not seen the rest of the books
on the subject. Despite this, one of the things I have attempted to do in
this edition is trim out the portions that have become obsolete, or at least
nonessential. In general, I've tried to go over everything, remove from the
3d edition what is no longer necessary, include changes, and improve
everything I could. I feel comfortable removing portions because the
original material remains on the Web site (www.BruceEckel.com) and the
CD ROM that accompanies this book, in the form of the freely-
downloadable first and second editions of the book. If you want the old
stuff, it’s still available, and this is a wonderful relief for an author. For
example, the “Design Patterns” chapter became too big and has been
moved into a book of its own: Thinking in Patterns with Java (also
downloadable at the Web site). So, by all rights the book should be
thinner. Feedback

I had already decided that when the next version of Java (JDK 1.5) is
released from Sun, which presumably will include a major new topic
called generics, that I would have to split the book in two in order to add
that new chapter. A little voice said “why wait?” so decided to do it for this
edition, and suddenly everything made sense. I was trying to cram too
much into an introductory book. Feedback

The new book isn’t a second volume, but rather a more advanced topic. It
will be called Thinking in Enterprise Java and is currently available (in
some form) as a free download from www.BruceEckel.com. Because it is
a separate book, it can expand to fit the necessary topics. The goal, like
Thinking in Java, is to produce a very understandable coverage of the
basics of the J2EE technologies so that the reader is prepared for more

advanced coverage of those topics. You can find more details in Appendix
(. Feedback

For those of you who still can’t stand the size of the book, I do apologize.
Believe it or not, I have worked hard to keep it small. Despite the bulk, I
feel like there may be enough alternatives to satisfy you. For one thing,
the book is available electronically, so if you carry your laptop you can put
the book on that and add no extra weight to your daily commute. If you're
really into slimming down, there are actually Palm Pilot versions of the

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Preface_10
mailto:TIJ3@MindView.net?Subject=[TIJ3]A0660
mailto:TIJ3@MindView.net?Subject=[TIJ3]A0661

book floating around. (One person told me he would read the book in bed
on his Palm with the backlighting on to keep from annoying his wife. I can
only hope that it helps send him to slumberland.) If you need it on paper,
I know of people who print a chapter at a time and carry it in their
briefcase to read on the train. Feedback

Java 2, JDK 1.4

The releases of the Java JDK are numbered 1.0, 1.1, 1.2, 1.3, and for this
book, 1.4. Although these version numbers are still in the “ones,” the
standard way to refer to any version of the language that is JDK 1.2 or
greater is to call it “Java 2.” This indicates the very significant changes
between “old Java”—which had many warts that I complained about in
the first edition of this book—and this more modern and improved
version of the language, which has far fewer warts and many additions
and nice designs. Feedback

This book is written for Java 2, in particular JDK 1.4 (much of the code
will not compile with earlier versions, and the build system will complain
and stop if you try). I have the great luxury of getting rid of all the old stuff
and writing to only the new, improved language because the old
information still exists in the earlier editions, on the Web and on the CD
ROM. Also, because anyone can freely download the JDK from
java.sun.com, it means that by writing to JDK 1.4 I'm not imposing a
financial hardship on someone by forcing them to upgrade. Feedback

Previous versions of Java were slow in coming out for Linux (see
wwuw.Linux.org), but that seems to have been fixed and new versions are
released for Linux at the same time as for other platforms — now even the
Macintosh is starting to keep up with more recent versions of Java. Linux
is a very important development in conjunction with Java, because it is
quickly becoming the most important server platform out there—fast,
reliable, robust, secure, well-maintained, and free, a true revolution in the
history of computing (I don’t think we’ve ever seen all of those features in
any tool before). And Java has found a very important niche in server-side
programming in the form of Servlets and Java ServerPages (JSPs),
technologies that are huge improvements over the traditional CGI
programming (these and related topics are covered in Thinking in
Enterprise Java). Feedback

Preface 7

mailto:TIJ3@MindView.net?Subject=[TIJ3]Preface_13
mailto:TIJ3@MindView.net?Subject=[TIJ3]Preface_14
mailto:TIJ3@MindView.net?Subject=[TIJ3]Preface_15
mailto:TIJ3@MindView.net?Subject=[TIJ3]Preface_16

The CD ROM

Another bonus with this edition is the CD ROM that is packaged in the
back of the book. I've resisted putting CD ROMs in the back of my books
in the past because I felt the extra charge for a few Kbytes of source code
on this enormous CD was not justified, preferring instead to allow people
to download such things from my Web site. However, you’ll soon see that
this CD ROM is different. Feedback

This CD actually doesn’t contain the source code from the book, but
instead a link to the code at www.MindView.net (you don’t need the link
on the CD to get to the source code. You can just go to the site and find it
that way). There are two reasons for this: the code was not complete at the
time the CD had to be sent to the printer, and this approach allows the
code to evolve and be corrected as any issues arise. Feedback

Because the book has evolved significantly over the three editions, the CD
contains the first and second editions of the book in HTML format,
including sections that for aforementioned reasons were removed from
later editions but which may in some cases be useful to you. In addition
you can download the HTML version of the current (34 edition) book
from www.MindView.net, and this will include corrections as they are
discovered and fixed. One benefit of the HTML version is that the index is
hyperlinked so navigating it is much simpler. Feedback

The bulk of the 400+ Megabytes of the CD, however, is a full multimedia
course called Foundations for Java. This includes the Thinking in C
seminar, which gives you an introduction to the C syntax, operators and
functions that Java syntax is based upon. In addition, it includes the first
7 lectures from the 2 edition of the Hands-On Java seminar-on-CD that
I created and narrate. Although historically the entire Hands-On Java CD
is only available for sale separately (this is also the case with the 3
edition of the Hands-On Java CD, which may be available when you read
this — see www.MindView.net), I decided to include the first seven
lectures from the 2nd edition because they will not have changed too much
in relationship to the 3 edition of the book, and so it will not only
provide you (along with Thinking in C) with a foundation for this book,

8 Thinking in Java www.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Preface_18
mailto:TIJ3@MindView.net?Subject=[TIJ3]A0545
mailto:TIJ3@MindView.net?Subject=[TIJ3]Preface_19

but in addition I hope it will give you a taste for the quality and value of
the Hands-On Java CD, 3" edition. Feedback

I originally commissioned Chuck Allison to create the Thinking in C part
of this seminar-on-CD ROM as a standalone product, but decided to
include it with the second editions of both Thinking in C++ and Thinking
in Java because of the consistent experience of having people come to
seminars without an adequate background in C. The thinking apparently
goes “I'm a smart programmer and I don’t want to learn C, but rather C++
or Java, so I'll just skip C and go directly to C++/Java.” After arriving at
the seminar, it slowly dawns on folks that the prerequisite of
understanding C syntax is there for a very good reason. By including the
CD ROM with the book, we can ensure that everyone attends a seminar
with adequate preparation. Feedback

The CD also allows the book to appeal to a wider audience. Even though
Chapter 3 (Controlling program flow) does cover the fundamentals of the
parts of Java that come from C, the CD is a gentler introduction, and
assumes even less about the student’s programming background than
does the book. And being walked through the material in the first seven
chapters via the corresponding lectures in the 27 edition of the Hands-On
Java CD should help you get an even better foothold into Java. It is my
hope that by including the CD more people will be able to be brought into
the fold of Java programming. Feedback

Preface 9

mailto:TIJ3@MindView.net?Subject=[TIJ3]A0662
mailto:TIJ3@MindView.net?Subject=[TIJ3]Preface_20
mailto:TIJ3@MindView.net?Subject=[TIJ3]Preface_21

Introduction

“He gave man speech, and speech created thought, Which
is the measure of the universe”—Prometheus Unbound,
Shelley

Human beings ... are very much at the mercy of the particular
language which has become the medium of expression for their
society. It is quite an illusion to imagine that one adjusts to reality
essentially without the use of language and that language is merely
an incidental means of solving specific problems of communication
and reflection. The fact of the matter is that the "real world" is to a
large extent unconsciously built up on the language habits of the

group.
The Status Of Linguistics As A Science, 1929, Edward Sapir

Like any human language, Java provides a way to express concepts. If
successful, this medium of expression will be significantly easier and more

flexible than the alternatives as problems grow larger and more complex.
Feedback

You can’t look at Java as just a collection of features—some of the features
make no sense in isolation. You can use the sum of the parts only if you
are thinking about design, not simply coding. And to understand Java in
this way, you must understand the problems with it and with
programming in general. This book discusses programming problems,
why they are problems, and the approach Java has taken to solve them.
Thus, the set of features that I explain in each chapter are based on the
way I see a particular type of problem being solved with the language. In
this way I hope to move you, a little at a time, to the point where the Java
mindset becomes your native tongue. Feedback

Throughout, I'll be taking the attitude that you want to build a model in
your head that allows you to develop a deep understanding of the
language; if you encounter a puzzle you’ll be able to feed it to your model
and deduce the answer. Feedback

11

mailto:TIJ3@MindView.net?Subject=[TIJ3]A0663
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_22
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_23

Prerequisites

This book assumes that you have some programming familiarity: you
understand that a program is a collection of statements, the idea of a
subroutine/function/macro, control statements such as “if” and looping
constructs such as “while,” etc. However, you might have learned this in
many places, such as programming with a macro language or working
with a tool like Perl. As long as you've programmed to the point where you
feel comfortable with the basic ideas of programming, you’ll be able to
work through this book. Of course, the book will be easier for the C
programmers and more so for the C++ programmers, but don’t count
yourself out if you're not experienced with those languages (but come
willing to work hard; also, the multimedia CD that accompanies this book
will bring you up to speed in the fundamentals necessary to learn Java).
However, I will be introducing the concepts of object-oriented
programming (OOP) and Java’s basic control mechanisms. Feedback

Although references will often be made to C and C++ language features,
these are not intended to be insider comments, but instead to help all
programmers put Java in perspective with those languages, from which,
after all, Java is descended. I will attempt to make these references simple
and to explain anything that I think a non- C/C++ programmer would not
be familiar with. Feedback

Learning Java

At about the same time that my first book Using C++ (Osborne/McGraw-
Hill, 1989) came out, I began teaching that language. Teaching
programming languages has become my profession; I've seen nodding
heads, blank faces, and puzzled expressions in audiences all over the
world since 1987. As I began giving in-house training with smaller groups
of people, I discovered something during the exercises. Even those people
who were smiling and nodding were confused about many issues. I found
out, by creating and chairing the C++ track at the Software Development
Conference for a number of years (and later creating and chairing the
Java track), that I and other speakers tended to give the typical audience
too many topics too fast. So eventually, through both variety in the

12

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_24
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_25

audience level and the way that I presented the material, I would end up
losing some portion of the audience. Maybe it’s asking too much, but
because I am one of those people resistant to traditional lecturing (and for
most people, I believe, such resistance results from boredom), I wanted to
try to keep everyone up to speed. Feedback

For a time, I was creating a number of different presentations in fairly
short order. Thus, I ended up learning by experiment and iteration (a
technique that also works well in Java program design). Eventually I
developed a course using everything I had learned from my teaching
experience. It tackles the learning problem in discrete, easy-to-digest
steps, and in a hands-on seminar (the ideal learning situation) there are
exercises following each of the short lessons. My company MindView, Inc.
now gives this as the public and in-house Thinking in Java seminar; this
is our main introductory seminar that provides the foundation for our
more advanced seminars. You can find details at www.MindView.net.
(The introductory seminar is also available as the Hands-On Java CD
ROM. Information is available at the same Web site.) EFeedback

The feedback that I get from each seminar helps me change and refocus
the material until I think it works well as a teaching medium. But this
book isn’t just seminar notes—I tried to pack as much information as I
could within these pages, and structured it to draw you through onto the
next subject. More than anything, the book is designed to serve the

solitary reader who is struggling with a new programming language.
Feedback

Goals

Like my previous book Thinking in C++, this book has come to be
structured around the process of teaching the language. In particular, my
motivation is to create something that provides me with a way to teach the
language in my own seminars. When I think of a chapter in the book, I
think in terms of what makes a good lesson during a seminar. My goal is
to get bite-sized pieces that can be taught in a reasonable amount of time,
followed by exercises that are feasible to accomplish in a classroom
situation. Feedback

My goals in this book are to: Feedback

Introduction 13

mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_26
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_27
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_28
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_29
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_30

Present the material one simple step at a time so that you can easily
digest each concept before moving on. Feedback

Use examples that are as simple and short as possible. This
sometimes prevents me from tackling “real world” problems, but
I've found that beginners are usually happier when they can
understand every detail of an example rather than being impressed
by the scope of the problem it solves. Also, there’s a severe limit to
the amount of code that can be absorbed in a classroom situation.
For this I will no doubt receive criticism for using “toy examples,”
but I'm willing to accept that in favor of producing something
pedagogically useful. Feedback

Carefully sequence the presentation of features so that you're
exposed to a topic before you see it in use. Of course, this isn’t
always possible; in those situations, a brief introductory
description is given. Feedback

Give you what I think is important for you to understand about the
language, rather than everything I know. I believe there is an
information importance hierarchy, and that there are some facts
that 95 percent of programmers will never need to know and that
just confuse people and adds to their perception of the complexity
of the language. To take an example from C, if you memorize the
operator precedence table (I never did), you can write clever code.
But if you need to think about it, it will also confuse the
reader/maintainer of that code. So forget about precedence, and
use parentheses when things aren’t clear. Feedback

Keep each section focused enough so that the lecture time—and the
time between exercise periods—is small. Not only does this keep
the audience’s minds more active and involved during a hands-on

seminar, but it gives the reader a greater sense of accomplishment.
Feedback

Provide you with a solid foundation so that you can understand the
issues well enough to move on to more difficult coursework and
bOOkS. Feedback

14

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_31
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_32
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_33
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_34
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_35
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_36

JDK HTML documentation

The Java language and libraries from Sun Microsystems (a free download
from java.sun.com) come with documentation in electronic form,
readable using a Web browser, and virtually every third party
implementation of Java has this or an equivalent documentation system.
Almost all the books published on Java have duplicated this
documentation. So you either already have it or you can download it, and
unless necessary, this book will not repeat that documentation because
it’s usually much faster if you find the class descriptions with your Web
browser than if you look them up in a book (and the on-line
documentation is probably more up-to-date). You’ll simply be referred to
“the JDK documentation.” This book will provide extra descriptions of the
classes only when it’s necessary to supplement that documentation so you
can understand a particular example. Feedback

Chapters

This book was designed with one thing in mind: the way people learn the
Java language. Seminar audience feedback helped me understand the
difficult parts that needed illumination. In the areas where I got ambitious
and included too many features all at once, I came to know—through the
process of presenting the material—that if you include a lot of new
features, you need to explain them all, and this easily compounds the
student’s confusion. As a result, I've taken a great deal of trouble to
introduce the features as few at a time as possible. Feedback

The goal, then, is for each chapter to teach a single feature, or a small
group of associated features, without relying on features that haven’t been
introduced yet. That way you can digest each piece in the context of your
current knowledge before moving on. Feedback

Here is a brief description of the chapters contained in the book, which
correspond to lectures and exercise periods in the Thinking in Java
seminar. Feedback

Introduction 15

mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_37
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_38
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_39
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_40

Chapter 1:

Chapter 2:

Chapter 3:

Introduction to Objects

(Corresponding lecture on the CD ROM). This chapter is an
overview of what object-oriented programming is all about,
including the answer to the basic question “What is an
object?”, interface vs. implementation, abstraction and
encapsulation, messages and methods, inheritance and
composition, and the subtle concept of polymorphism. You’'ll
also get an overview of issues of object creation such as
constructors, where the objects live, where to put them once
they’re created, and the magical garbage collector that cleans
up the objects that are no longer needed. Other issues will be
introduced, including error handling with exceptions,
multithreading for responsive user interfaces, and networking
and the Internet. You’ll learn what makes Java special and
why it’s been so successful. Feedback

Everything is an Object

(Corresponding lecture on the CD ROM). This chapter moves
you to the point where you can write your first Java program.
It begins with an overview of the essentials: the concept of a
reference to an object; how to create an object; an
introduction to primitive types and arrays; scoping and the
way objects are destroyed by the garbage collector; how
everything in Java is a new data type (class); the basics of
creating your own classes; methods, arguments, and return
values; name visibility and using components from other
libraries; the static keyword; and comments and embedded
documentation. Feedback

Controlling Program Flow

(Corresponding set of lectures on the CD ROM: Thinking in
C). This chapter begins with all of the operators that come to
Java from C and C++. In addition, you’ll discover common
operator pitfalls, casting, promotion, and precedence. This is
followed by the basic control-flow and selection operations
that you get with virtually any programming language: choice
with if-else; looping with for and while; quitting a loop with
break and continue as well as Java’s labeled break and
labeled continue (which account for the “missing goto” in

16

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]A0544
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_41

Chapter 4:

Chapter 5:

Chapter 6:

Java); and selection using switch. Although much of this
material has common threads with C and C++ code, there are
some differences. Feedback

Initialization & Cleanup

(Corresponding lecture on the CD ROM). This chapter begins
by introducing the constructor, which guarantees proper
initialization. The definition of the constructor leads into the
concept of method overloading (since you might want several
constructors). This is followed by a discussion of the process
of cleanup, which is not always as simple as it seems.
Normally, you just drop an object when you’re done with it
and the garbage collector eventually comes along and releases
the memory. This portion explores the garbage collector and
some of its idiosyncrasies. The chapter concludes with a
closer look at how things are initialized: automatic member
initialization, specifying member initialization, the order of

initialization, static initialization and array initialization.
Feedback

Hiding the Implementation

(Corresponding lecture on the CD ROM). This chapter covers
the way that code is packaged together, and why some parts of
a library are exposed while other parts are hidden. It begins
by looking at the package and import keywords, which
perform file-level packaging and allow you to build libraries of
classes. It then examines subject of directory paths and file
names. The remainder of the chapter looks at the public,
private, and protected keywords, the concept of package
access, and what the different levels of access control mean
when used in various contexts. Feedback

Reusing Classes

(Corresponding lecture on the CD ROM). The simplest way to
reuse a class is to embed an object inside your new class with
composition. However, composition isn’t the only way to
make new classes from existing ones. The concept of
inheritance is standard in virtually all OOP languages. It’s a
way to take an existing class and add to its functionality (as

Introduction

17

mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_42
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_43
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_44

Chapter 7:

Chapter 8:

Chapter 9:

well as change it, the subject of Chapter 7). Inheritance is
often a way to reuse code by leaving the “base class” the same,
and just patching things here and there to produce what you
want. In this chapter you’ll learn how composition and
inheritance reuse code in Java, and how to apply them. Feedback

Polymorphism

(Corresponding lecture on the CD ROM). On your own, you
might take nine months to discover and understand
polymorphism, a cornerstone of OOP. Through small, simple
examples you'll see how to create a family of types with
inheritance and manipulate objects in that family through
their common base class. Java’s polymorphism allows you to
treat all objects in this family generically, which means the
bulk of your code doesn’t rely on specific type information.
This makes your code more flexible, so building programs and
code maintenance is easier and cheaper. Feedback

Interfaces & Inner Classes

Java provides special tool to set up design and reuse
relationships: the interface, which is a pure abstraction of the
interface of an object. The interface is more than just an
abstract class taken to the extreme, since it allows you to
perform a variation on C++’s “multiple inheritance,” by

creating a class that can be upcast to more than one base type.
Feedback

At first, inner classes look like a simple code hiding
mechanism: you place classes inside other classes. You'll
learn, however, that the inner class does more than that—it
knows about and can communicate with the surrounding
class. The kind of code you can write with inner classes is
more elegant and clear. However, it is a new concept to most
and it takes some time to become comfortable with design
using inner classes. Feedback

Error Handling with Exceptions
The basic philosophy of Java is that badly-formed code will
not be run. As much as possible, the compiler catches

18

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_45
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_46
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_47
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_48

problems, but sometimes a problem—either a programmer
error or a natural error condition that occurs as part of the
normal execution of the program—can be detected and dealt
with only at run time. Java has exception handling to deal
with any problems that arise while the program is running.
This chapter examines how the keywords try, catch, throw,
throws, and finally work in Java; when you should throw
exceptions and what to do when you catch them. In addition,
you'll see Java’s standard exceptions, how to create your own,
what happens with exceptions in constructors, and how
exception handlers are discovered during an exception. Feedback

Chapter 10: Detecting Types

Chapter 11:

Java run-time type identification (RTTI) lets you find the
exact type of an object when you have a reference to only the
base type. Normally, you’ll want to intentionally ignore the
exact type and let Java’s dynamic binding mechanism
(polymorphism) implement the correct behavior for that type.
But occasionally it is very helpful to know the exact type of an
object for which you have only a base reference. Often this
information allows you to perform a special-case operation
more efficiently. This chapter also introduces the Java
reflection mechanism. You’ll learn what RTTT and reflection
are for and how to use them, and also how to get rid of RTTI
when it doesn’t belong there. Feedback

Collections of Objects

It’s a fairly simple program that has only a fixed quantity of
objects with known lifetimes. In general, your programs will
always be creating new objects at a variety of times that will
be known only while the program is running. In addition, you
won’t know until run time the quantity or even the exact type
of the objects you need. To solve the general programming
problem, you need to create any number of objects, anytime,
anywhere. This chapter explores in depth the container
library that Java 2 supplies to hold objects while you're
working with them: the simple arrays and more sophisticated
containers (data structures) such as ArrayList and
HashMap. Feedback

Introduction

19

mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_50
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_52
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_49

Chapter 12:

Chapter 13:

Chapter 14:

The Java I/0 System

Theoretically, you can divide any program into three parts:
input, process, and output. This implies that I/O
(input/output) is an important part of the equation. In this
chapter you’ll learn about the different classes that Java
provides for reading and writing files, blocks of memory, and
the console. The evolution of the Java I/O framework and the
JDK 1.4 “new” 10 (nio) will be examined. In addition, this
chapter shows how you can take an object, “stream” it (so that
it can be placed on disk or sent across a network) and then
reconstruct it, which is handled for you with Java’s object
serialization. Java’s compression libraries, which are used in
the Java ARchive file format (JAR), are examined. Finally, the

new preferences API and regular expressions are explained.
Feedback

Concurrency

Java provides a built-in facility to support multiple
concurrent subtasks, called threads, running within a single
program. (Unless you have multiple processors on your
machine, this is only the appearance of multiple subtasks.)
Although these can be used anywhere, threads are most
apparent when trying to create a responsive user interface so,
for example, a user isn’t prevented from pressing a button or
entering data while some processing is going on. This chapter
gives you a solid grounding in the fundamentals of concurrent
programming. Feedback

Creating Windows and Applets

Java comes with the “Swing” GUI library, which is a set of
classes that handle windowing in a portable fashion. These
windowed programs can either be World Wide Web applets
or stand-alone applications. This chapter is an introduction to
the creation of programs using Swing. Applet signing and
Java Web Start are demonstrated. Also, the important
JavaBeans technology is introduced, which is fundamental
for the creation of Rapid-Application Development (RAD)
program-building tools. Feedback

20

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_51
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_54
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_53

Chapter 15:

Chapter 16:

Appendix A:

Discovering Problems

Language-checking mechanisms can take us only so far in our
quest to develop a correctly-working program. This chapter
presents tools to solve the problems that the compiler doesn’t.
One of the biggest steps forward is the incorporation of
automated unit testing. For this book, a custom testing
system was developed to ensure the correctness of the
program output, but the defacto standard JUnit testing
system is also introduced. Automatic building is implemented
with the open-source standard Ant tool, and for teamwork,
the basics of CVS are explained. For problem reporting at
runtime, this chapter introduces the Java assertion
mechanism (shown here used with Design by Contract), the
logging API, debuggers, profilers and even Doclets (which can
help discover problems in source code).

Analysis & Design

The object-oriented paradigm is a new and different way of
thinking about programming, and many people have trouble
at first knowing how to approach an OOP project. Once you
understand the concept of an object, and as you learn to think
more in an object-oriented style, you can begin to create
“good” designs that take advantage of all the benefits that
OOP has to offer. This chapter introduces the ideas of
analysis, design, and some ways to approach the problems of
developing good object-oriented programs in a reasonable
amount of time. Topics include UML diagrams and associated
methodology, use cases, CRC cards, iterative development,
Extreme Programming, ways to develop and evolve reusable
code, and strategies for transition to object-oriented
programming.

Passing & Returning Objects

Since the only way you talk to objects in Java is through
references, the concepts of passing an object into a method
and returning an object from a method have some interesting
consequences. This appendix explains what you need to know
to manage objects when you’re moving in and out of methods,

Introduction

21

Appendix B:

Appendix C:

Appendix D:

and also shows the String class, which uses a different
approach to the problem. Feedback

Java Programming Guidelines

This appendix contains suggestions that I have discovered
and collected over the years to help guide you while
performing low-level program design and writing code. Feedback

Supplements

Descriptions of additional learning material available from
MindView:

1. The CD ROM that’s in the back of this book containing the
Foundations for Java seminar-on-CD, to prepare you for this
book.

2. The Hands-On Java CD ROM, available at
www.MindView.net. A seminar-on-CD that’s inspired by the
material in this book.

3. Thinking in Enterprise Java, which covers more advanced
Java topics appropriate to enterprise programming. Available
at www.MindView.net.

4. Thinking in Patterns with Java, which covers more
advanced Java topics on Design Patterns and problem solving
techniques. Available at www.MindView.net.

Recommended Reading

A list of some of the Java books I've found particularly useful.
Feedback

Exercises

I've discovered that simple exercises are exceptionally useful to complete
a student’s understanding during a seminar, so you’ll find a set at the end
of each chapter. Feedback

Most exercises are designed to be easy enough that they can be finished in
a reasonable amount of time in a classroom situation while the instructor
observes, making sure that all the students are absorbing the material.
Some exercises are more advanced to prevent boredom for experienced
students. The majority are designed to be solved in a short time and test

22

Thinking in Java www.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_56
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_58
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_59
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_60

and polish your knowledge. Some are more challenging, but none present
major challenges. (Presumably, you'll find those on your own—or more
likely they’ll find you). Feedback

Solutions to selected exercises can be found in the electronic document
The Thinking in Java Annotated Solution Guide, available for a small fee
from www.BruceEckel.com. Eeedback

Multimedia CD ROM

There are two multimedia CDs associated with this book. The first is
bound into the book itself: Foundations for Java, described in Appendix
D, which prepares you for the book by bringing you up to speed on the
necessary C syntax you need to be able to understand Java. Feedback

A second Multimedia CD ROM is available, which is based on the contents
of the book. This CD ROM is a separate product and contains the entire
contents of the week-long Thinking in Java training seminar. This is
more than 15 hours of lectures that I have recorded, synchronized with
hundreds of slides of information. Because the seminar is based on this
book, it is an ideal accompaniment. Feedback

The CD ROM contains all the lectures (with the important exception of
personalized attention!) from the five-day full-immersion training
seminars. We believe that it sets a new standard for quality. Feedback

The Hands-On Java CD ROM is available only by ordering directly from
the Web site www.BruceEckel.com. Feedback

Source code

All the source code for this book is available as copyrighted freeware,
distributed as a single package, by visiting the Web site
www.BruceEckel.com. To make sure that you get the most current
version, this is the official site for distribution of the code and the
electronic version of the book. You can find mirrored versions of the
electronic book and the code on other sites (some of these sites are found
at www.BruceEckel.com), but you should check the official site to ensure

Introduction 23

mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_61
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_62
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_63
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_64
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_65
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_66

that the mirrored version is actually the most recent edition. You may
distribute the code in classroom and other educational situations. Feedback

The primary goal of the copyright is to ensure that the source of the code
is properly cited, and to prevent you from republishing the code in print
media without permission. (As long as the source is cited, using examples
from the book in most media is generally not a problem.) Feedback

In each source code file you will find a reference to the following copyright
notice: Feedback

[1:! :CopyRi ght.txt

Copyri ght €2003 Bruce Eckel

Source code file fromthe 3rd edition of the book
"Thinking in Java." Al rights reserved EXCEPT as
all owed by the foll ow ng statenents:

You can freely use this file

for your own work (personal or commercial),

i ncludi ng nodifications and distribution in
executable formonly. Permission is granted to use
this file in classroomsituations, including its
use in presentation materials, as long as the book
"Thinking in Java" is cited as the source.

Except in classroom situations, you cannot copy
and distribute this code; instead, the sole
distribution point is http://ww. BruceEckel .com
(and official mrror sites) where it is

freely avail able. You cannot renove this

copyri ght and notice. You cannot distribute
nodi fi ed versions of the source code in this
package. You cannot use this file in printed
nmedi a wi t hout the express perm ssion of the

aut hor. Bruce Eckel nakes no representation about
the suitability of this software for any purpose.
It is provided "as is" without express or inplied
warranty of any kind, including any inplied
warranty of nerchantability, fitness for a
particul ar purpose or non-infringenent. The entire
risk as to the quality and performance of the
software is with you. Bruce Eckel and the
publ i sher shall not be liable for any danages
suffered by you or any third party as a result of
using or distributing software. In no event will
Bruce Eckel or the publisher be liable for any

24

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_67
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_68
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_69

| ost revenue, profit, or data, or for direct,

i ndirect, special, consequential, incidental, or
puni tive damages, however caused and regardl ess of
the theory of liability, arising out of the use of
or inability to use software, even if Bruce Ecke
and the publisher have been advised of the
possibility of such damages. Should the software
prove defective, you assume the cost of al
necessary servicing, repair, or correction. If you
t hi nk you've found an error, please subnmit the
correction using the formyou will find at

www. BruceEckel . com (Pl ease use the sane

formfor non-code errors found in the book.)

11~

You may use the code in your projects and in the classroom (including
your presentation materials) as long as the copyright notice that appears
in each source file is retained. Feedback

Coding standards

In the text of this book, identifiers (method, variable, and class names)
are set in bold. Most keywords are also set in bold, except for those
keywords that are used so much that the bolding can become tedious,
such as “class.” Feedback

I use a particular coding style for the examples in this book. This style
follows the style that Sun itself uses in virtually all of the code you will
find at its site (see java.sun.com/docs/codeconv/index.html), and seems
to be supported by most Java development environments. If you’ve read
my other works, you’ll also notice that Sun’s coding style coincides with
mine—this pleases me, although I had nothing to do with it. The subject of
formatting style is good for hours of hot debate, so I'll just say I'm not
trying to dictate correct style via my examples; I have my own motivation
for using the style that I do. Because Java is a free-form programming

language, you can continue to use whatever style you’re comfortable with.
Feedback

The programs in this book are files that are included by the word
processor in the text, directly from compiled files. Thus, the code files
printed in the book should all work without compiler errors. The errors
that should cause compile-time error messages are commented out with

Introduction 25

mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_70
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_71
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_72

the comment //! so they can be easily discovered and tested using
automatic means. Errors discovered and reported to the author will
appear first in the distributed source code and later in updates of the book
(which will also appear on the Web site www.BruceEckel.com). Feedback

Java versions

I generally rely on the Sun implementation of Java as a reference when
determining whether behavior is correct. Feedback

Over time, Sun has released three major versions of Java: 1.0, 1.1 and 2
(which is called version 2 even though the releases of the JDK from Sun
continue to use the numbering scheme of 1.2, 1.3, 1.4, etc.). Version 2
seems to finally bring Java into the prime time, in particular where user
interface tools are concerned. This book focuses on and is tested with Java
2, although I do sometimes make concessions to earlier features of Java 2
so that the code will compile under Linux (via the Linux JDK that was
available at this writing). Feedback

If you need to learn about earlier releases of the language that are not
covered in this edition, the first edition of the book is freely downloadable
at www.BruceEckel.com and is also contained on the CD that is bound in
with this book. Feedback

One thing you’ll notice is that, when I do need to mention earlier versions
of the language, I don’t use the sub-revision numbers. In this book I will
refer to Java 1.0, Java 1.1, and Java 2 only, to guard against typographical
errors produced by further sub-revisioning of these products. Feedback

Seminars and mentoring

My company provides five-day, hands-on, public and in-house training
seminars based on the material in this book. Selected material from each
chapter represents a lesson, which is followed by a monitored exercise
period so each student receives personal attention. The audio lectures and
slides for the introductory seminar are also captured on CD ROM to
provide at least some of the experience of the seminar without the travel
and expense. For more information, go to www.BruceEckel.com. Feedback

26

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_73
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_74
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_75
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_76
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_77
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_78

My company also provides consulting, mentoring and walkthrough
services to help guide your project through its development cycle—
especially your company’s first Java project. Feedback

Errors

No matter how many tricks a writer uses to detect errors, some always
creep in and these often leap off the page for a fresh reader. Feedback

There is an error submission form linked from the beginning of each
chapter in the HTML version of this book (and on the CD ROM bound
into the back of this book, and downloadable from www.BruceEckel.com)
and also on the Web site itself, on the page for this book. If you discover
anything you believe to be an error, please use this form to submit the
error along with your suggested correction. If necessary, include the
original source file and note any suggested modifications. Your help is
appreciated. Feedback

Note on the cover design

The cover of Thinking in Java is inspired by the American Arts & Crafts
Movement, which began near the turn of the century and reached its
zenith between 1900 and 1920. It began in England as a reaction to both
the machine production of the Industrial Revolution and the highly
ornamental style of the Victorian era. Arts & Crafts emphasized spare
design, the forms of nature as seen in the art nouveau movement, hand-
crafting, and the importance of the individual craftsperson, and yet it did
not eschew the use of modern tools. There are many echoes with the
situation we have today: the turn of the century, the evolution from the
raw beginnings of the computer revolution to something more refined and
meaningful to individual persons, and the emphasis on software
craftsmanship rather than just manufacturing code. Feedback

I see Java in this same way: as an attempt to elevate the programmer
away from an operating-system mechanic and toward being a “software
craftsman.” Feedback

Introduction 27

mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_79
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_80
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_81
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_82
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_83

Both the author and the book/cover designer (who have been friends
since childhood) find inspiration in this movement, and both own
furniture, lamps, and other pieces that are either original or inspired by
this period. Feedback

The other theme in this cover suggests a collection box that a naturalist
might use to display the insect specimens that he or she has preserved.
These insects are objects, which are placed within the box objects. The
box objects are themselves placed within the “cover object,” which
illustrates the fundamental concept of aggregation in object-oriented
programming. Of course, a programmer cannot help but make the
association with “bugs,” and here the bugs have been captured and
presumably killed in a specimen jar, and finally confined within a small
display box, as if to imply Java’s ability to find, display, and subdue bugs
(which is truly one of its most powerful attributes). Feedback

Acknowledgements

First, thanks to associates who have worked with me to give seminars,
provide consulting, and develop teaching projects: Andrea Provaglio,
Dave Bartlett, Bill Venners, Chuck Allison, Jeremy Meyer, and Larry
O’Brien. I appreciate your patience as I continue to try to develop the best
model for independent folks like us to work together.

Recently, no doubt because of the Internet, I have become associated with
a surprisingly large number of people who assist me in my endeavors,
usually working from their own home offices. In the past, I would have
had to pay for a pretty big office space to accommodate all these folks, but
because of the net and Fedex and occasionally the telephone, I'm able to
benefit from their help without the extra costs. In my attempts to learn to
better “play well with others,” you have all been very helpful, and I hope
to continue learning how to make my own work better through the efforts
of others. Paula Steuer has been invaluable in taking over my haphazard
business practices and making them sane (thanks for prodding me when I
don’t want to do something, Paula). Jonathan Wilcox, Esq., has sifted
through my corporate structure and turned over every possible rock that
might hide scorpions, and frog-marched us through the process of putting
everything straight, legally. Thanks for your care and persistence.

28 Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_84
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_85

Sharlynn Cobaugh (who discovered Paula) has made herself an expert in
sound processing and an essential part of creating the multimedia
training CD ROMs, as well as tackling other problems. Thanks for your
perserverance when faced with intractable computer problems. Evan
Cofsky (Evan@TheUnixMan.com) has become an essential part of my
development process, taking to the Python programming language like a
duck (Hmm. Such a mixed metaphor could produce a fat Python) and
solving all kinds of difficult problems, including the (final?) re-
architecting of BackTalk into an email-driven XML database. The folks at
Amaio in Prague have helped me out with several projects. Daniel Will-
Harris was the original work-by-Iinternet inspiration, and he is of course
fundamental to all my design solutions.

For this project, I took another step which had been fermenting in the
back of my mind for awhile. For the summer of 2002, I created an
internship program in Crested Butte, Colorado, initially looking for two
interns and ending up with 5 (two volunteers). Not only did they
contribute to the book but they helped keep me focused on the project.
Thanks to JJ Badri, Ben Hindman, Mihajlo Jovanovic, Mark Welsh.
Chintan Thakker was able to stay for a second internship through the end
of the book process and beyond, and since I had to rent the intern condo
in Mount Crested Butte anyway, we advertised for volunteers and got
Mike Levin, Mike Shea, and Ian Phillips, who all made contributions.
Someday I may do another internship program; visit www.MindView.net
for news.

Thanks to the Doyle Street Cohousing Community for putting up with me
for the two years that it took me to write the first edition of this book (and
for putting up with me at all). Thanks very much to Kevin and Sonda
Donovan for subletting their great place in gorgeous Crested Butte,
Colorado for the summer while I worked on the first edition of the book
(and to Kevin for all the great remodeling on my place in CB). Also thanks
to the friendly residents of Crested Butte and the Rocky Mountain
Biological Laboratory who make me feel so welcome. My yoga teachers in
CB, Maria and Brenda, were instrumental in keeping me sane during the
development of the 3™ edition. Feedback

Thanks to Claudette Moore at Moore Literary Agency for her tremendous
patience and perseverance in getting me exactly what I wanted. Thanks to

Introduction 29

mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_87

Paul Petralia at Prentice Hall for continuing to give me what I want, and
for going out of his way to make things run smoothly for me (and for
putting up with all my special requirements). Feedback

My first two books were published with Jeff Pepper as editor at
Osborne/McGraw-Hill. Jeff appeared at the right place and the right time
at Prentice Hall to lay the original groundwork for these books, before
passing the responsibility on to Paul. Thanks, Jeff. Feedback

Thanks to Rolf André Klaedtke (Switzerland); Martin Vlcek, Vlada &
Pavel Lahoda, (Prague); and Marco Cantu (Italy) for hosting me on my
first self-organized European seminar tour. Feedback

I'm especially indebted to Gen Kiyooka and his company Digigami, who
graciously provided my Web server for the first several years of my
presence on the Web. This was an invaluable learning aid. Feedback

Special thanks to Larry and Tina O’Brien, who helped turn my seminar
into the original Hands-On Java CD ROM. (You can find out more at
wwuw.BruceEckel.com.) Eeedback

Certain open-source tools have proved invaluable during my development
process and I am very grateful to the creators every time I use these.
Cygwin (http://www.cygwin.com) has solved innumerable problems for
me that Windows can’t/won’t and I become more attached to it each day
(if I only had this 15 years ago when my brain was still hard-wired with
Gnu Emacs). CVS and Ant have become essential to my Java development
process and I couldn’t go back now. I've even become fond of JUnit
(http://www.junit.org) now that they’ve actually made it “the simplest
thing that could possibly work.” IBM’s Eclipse (http://www.eclipse.org) is
a truly wonderful contribution to the development community, and I
expect to see great things from it as it continues to evolve (how did IBM
become hip? I must have missed a memo). Linux was used daily during
the development process, especially by the interns. And of course, if I
don’t say it enough everywhere else, I use Python (www.Python.org)
constantly to solve problems, the brainchild of my buddy Guido Van
Rossum and the goofy geniuses at PythonLabs with whom I spent a few
great days doing XP on Zope 3 (Tim, I've now framed that mouse you
borrowed, officially named the “TimMouse”). You guys need to find

30

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_88
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_89
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_86
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_90
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_93

healthier places to eat lunch. (Also, thanks to the entire Python
community, an amazing bunch of people).

Lots of people sent in corrections and I am indebted to them all, but
particular thanks go to (for the first edition): Kevin Raulerson (found tons
of great bugs), Bob Resendes (simply incredible), John Pinto, Joe Dante,
Joe Sharp (all three were fabulous), David Combs (many grammar and
clarification corrections), Dr. Robert Stephenson, John Cook, Franklin
Chen, Zev Griner, David Karr, Leander A. Stroschein, Steve Clark, Charles
A. Lee, Austin Maher, Dennis P. Roth, Roque Oliveira, Douglas Dunn,
Dejan Ristic, Neil Galarneau, David B. Malkovsky, Steve Wilkinson, and a
host of others. Prof. Ir. Marc Meurrens put in a great deal of effort to
publicize and make the electronic version of the first edition of the book
available in Europe. Feedback

Thanks to those who helped me rewrite the examples to use the Swing
library, and for other assistance: Jon Shvarts, Thomas Kirsch, Rahim
Adatia, Rajesh Jain, Ravi Manthena, Banu Rajamani, Jens Brandt, Nitin
Shivaram, Malcolm Davis, and everyone who expressed support. Feedback

There have been a spate of smart technical people in my life who have
become friends and have also been both influential and unusual in that
they do yoga and practice other forms of spiritual enhancement, which I
find quite inspirational and instructional. They are Kraig Brockschmidt,
Gen Kiyooka, and Andrea Provaglio (who helps in the understanding of
Java and programming in general in Italy, and now in the United States as
an associate of the MindView team). Eeedback

It’s not that much of a surprise to me that understanding Delphi helped
me understand Java, since there are many concepts and language design
decisions in common. My Delphi friends provided assistance by helping
me gain insight into that marvelous programming environment. They are
Marco Cantu (another Italian—perhaps being steeped in Latin gives one
aptitude for programming languages?), Neil Rubenking (who used to do
the yoga/vegetarian/Zen thing until he discovered computers), and of

course Zack Urlocker, a long-time pal whom I've traveled the world with.
Feedback

My friend Richard Hale Shaw’s insights and support have been very
helpful (and Kim’s, too). Richard and I spent many months giving

Introduction 31

mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_94
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_102
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_95
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_96

seminars together and trying to work out the perfect learning experience
for the attendees. Feedback

The book design, cover design, and cover photo were created by my friend
Daniel Will-Harris, noted author and designer (www.Will-Harris.com),
who used to play with rub-on letters in junior high school while he
awaited the invention of computers and desktop publishing, and
complained of me mumbling over my algebra problems. However, I
produced the camera-ready pages myself, so the typesetting errors are
mine. Microsoft® Word XP for Windows was used to write the book and
to create camera-ready pages in Adobe Acrobat; the book was created
directly from the Acrobat PDF files. (As a tribute to the electronic age, I
happened to be overseas when the final version of the first and second
editions of the book was produced—the first edition was sent from
Capetown, South Africa and the second edition was posted from Prague).
The body typeface is Georgia and the headlines are in Verdana. The cover
typeface is ITC Rennie Mackintosh. Feedback

Thanks to the vendors who created the compilers: Borland, the
Blackdown group (for Linux), and of course, Sun. Feedback

A special thanks to all my teachers and all my students (who are my
teachers as well). The most fun writing teacher was Gabrielle Rico (author
of Writing the Natural Way, Putnam, 1983). I'll always treasure the
terrific week at Esalen. Feedback

The supporting cast of friends includes, but is not limited to: Andrew
Binstock, Steve Sinofsky, JD Hildebrandt, Tom Keffer, Brian McElhinney,
Brinkley Barr, Bill Gates at Midnight Engineering Magazine, Larry
Constantine and Lucy Lockwood, Greg Perry, Dan Putterman, Christi
Westphal, Gene Wang, Dave Mayer, David Intersimone, Andrea
Rosenfield, Claire Sawyers, more Italians (Laura Fallai, Corrado, Ilsa, and
Cristina Giustozzi), Chris and Laura Strand, the Almquists, Brad Jerbic,
Marilyn Cvitanic, the Mabrys, the Haflingers, the Pollocks, Peter Vinci,
the Robbins Families, the Moelter Families (and the McMillans), Michael
Wilk, Dave Stoner, Laurie Adams, the Cranstons, Larry Fogg, Mike and
Karen Sequeira, Gary Entsminger and Allison Brody, Kevin Donovan and
Sonda Eastlack, Chester and Shannon Andersen, Joe Lordi, Dave and
Brenda Bartlett, David Lee, the Rentschlers, the Sudeks, Dick, Patty, and

32

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_97
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_98
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_99
mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_100

Lee Eckel, Lynn and Todd, and their families. And of course, Mom and
Dad. Feedback

Introduction 33

mailto:TIJ3@MindView.net?Subject=[TIJ3]Intro_101

1: Introduction
to Objects

“We cut nature up, organise it into concepts, and ascribe
significances as we do, largely because we are parties to an
agreement that holds throughout our speech community
and is codified in the patterns of our language ... we
cannot talk at all except by subscribing to the organisation
and classification of data which the agreement decrees.”
Benjamin Lee Whorf (1897-1941)

The genesis of the computer revolution was in a machine. The genesis of
our programming languages thus tends to look like that machine.

But computers are not so much machines as they are mind amplification
tools (“bicycles for the mind,” as Steve Jobs is fond of saying) and a
different kind of expressive medium. As a result, the tools are beginning
to look less like machines and more like parts of our minds, and also like
other forms of expression such as writing, painting, sculpture, animation,
and filmmaking. Object-oriented programming (OOP) is part of this
movement toward using the computer as an expressive medium. Feedback

This chapter will introduce you to the basic concepts of OOP, including an
overview of development methods. This chapter, and this book, assume
that you have had experience in a procedural programming language,
although not necessarily C. If you think you need more preparation in
programming and the syntax of C before tackling this book, you should
work through the Foundations for Java training CD ROM, bound in the
back of this book. Feedback

This chapter is background and supplementary material. Many people do
not feel comfortable wading into object-oriented programming without
understanding the big picture first. Thus, there are many concepts that
are introduced here to give you a solid overview of OOP. However, other

35

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_103
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_104

people may not get the big picture concepts until they’ve seen some of the
mechanics first; these people may become bogged down and lost without
some code to get their hands on. If you’re part of this latter group and are
eager to get to the specifics of the language, feel free to jump past this
chapter—skipping it at this point will not prevent you from writing
programs or learning the language. However, you will want to come back
here eventually to fill in your knowledge so you can understand why
objects are important and how to design with them. Feedback

The progress of

abstraction

All programming languages provide abstractions. It can be argued that
the complexity of the problems you're able to solve is directly related to
the kind and quality of abstraction. By “kind” I mean, “What is it that you
are abstracting?” Assembly language is a small abstraction of the
underlying machine. Many so-called “imperative” languages that followed
(such as Fortran, BASIC, and C) were abstractions of assembly language.
These languages are big improvements over assembly language, but their
primary abstraction still requires you to think in terms of the structure of
the computer rather than the structure of the problem you are trying to
solve. The programmer must establish the association between the
machine model (in the “solution space,” which is the place where you’re
modeling that problem, such as a computer) and the model of the
problem that is actually being solved (in the “problem space,” which is the
place where the problem exists). The effort required to perform this
mapping, and the fact that it is extrinsic to the programming language,
produces programs that are difficult to write and expensive to maintain,

and as a side effect created the entire “programming methods” industry.
Feedback

The alternative to modeling the machine is to model the problem you're
trying to solve. Early languages such as LISP and APL chose particular
views of the world (“All problems are ultimately lists” or “All problems are
algorithmic,” respectively). PROLOG casts all problems into chains of
decisions. Languages have been created for constraint-based
programming and for programming exclusively by manipulating graphical

36

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_105
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_106

symbols. (The latter proved to be too restrictive.) Each of these
approaches is a good solution to the particular class of problem they’re
designed to solve, but when you step outside of that domain they become
awkward. Feedback

The object-oriented approach goes a step further by providing tools for
the programmer to represent elements in the problem space. This
representation is general enough that the programmer is not constrained
to any particular type of problem. We refer to the elements in the problem
space and their representations in the solution space as “objects.” (You
will also need other objects that don’t have problem-space analogs.) The
idea is that the program is allowed to adapt itself to the lingo of the
problem by adding new types of objects, so when you read the code
describing the solution, you're reading words that also express the
problem. This is a more flexible and powerful language abstraction than
what we’ve had before!. Thus, OOP allows you to describe the problem in
terms of the problem, rather than in terms of the computer where the
solution will run. There’s still a connection back to the computer: each
object looks quite a bit like a little computer—it has a state, and it has
operations that you can ask it to perform. However, this doesn’t seem like
such a bad analogy to objects in the real world—they all have
characteristics and behaviors. Feedback

Alan Kay summarized five basic characteristics of Smalltalk, the first
successful object-oriented language and one of the languages upon which
Java is based. These characteristics represent a pure approach to object-
oriented programming: Feedback

1. Everything is an object. Think of an object as a fancy
variable; it stores data, but you can “make requests” to that object,
asking it to perform operations on itself. In theory, you can take
any conceptual component in the problem you’re trying to solve
(dogs, buildings, services, etc.) and represent it as an object in your
program. Feedback

1 Some language designers have decided that object-oriented programming by itself is not
adequate to easily solve all programming problems, and advocate the combination of
various approaches into multiparadigm programming languages. See Multiparadigm
Programming in Leda by Timothy Budd (Addison-Wesley 1995).

Chapter 1: Introduction to Objects 37

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_107
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_108
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_110
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_111

2. A program is a bunch of objects telling each other
what to do by sending messages. To make a request of an
object, you “send a message” to that object. More concretely, you
can think of a message as a request to call a method that belongs to
a particular object. Feedback

3. Each object has its own memory made up of other
objects. Put another way, you create a new kind of object by
making a package containing existing objects. Thus, you can build
complexity into a program while hiding it behind the simplicity of
objects. Feedback

4, Every object has a type. Using the parlance, each object is an
instance of a class, in which “class” is synonymous with “type.” The
most important distinguishing characteristic of a class is “What
messages can you send to it?” Feedback

5. All objects of a particular type can receive the same
messages. This is actually a loaded statement, as you will see
later. Because an object of type “circle” is also an object of type
“shape,” a circle is guaranteed to accept shape messages. This
means you can write code that talks to shapes and automatically
handle anything that fits the description of a shape. This
substitutability is one of the powerful concepts in OOP. Feedback

Booch offers an even more succinct description of an object:
An object has state, behavior and identity.

This means that an object can have internal data (which gives it state),
methods (to produce behavior), and each object can be uniquely
distinguished from every other object—to put this in a concrete sense,
each object has a unique address in memory?2. Feedback

2 This is actually a bit restrictive, since objects can conceivably exist in different machines
and address spaces, and they can also be stored on disk. In these cases, the identity of the
object must be determined by something other than memory address.

38 Thinking in Java www.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_112
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_113
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_114
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_115
mailto:TIJ3@MindView.net?Subject=[TIJ3]A0105

An object has an interface

Aristotle was probably the first to begin a careful study of the concept of
type; he spoke of “the class of fishes and the class of birds.” The idea that
all objects, while being unique, are also part of a class of objects that have
characteristics and behaviors in common was used directly in the first
object-oriented language, Simula-67, with its fundamental keyword class
that introduces a new type into a program. Feedback

Simula, as its name implies, was created for developing simulations such
as the classic “bank teller problem.” In this, you have a bunch of tellers,
customers, accounts, transactions, and units of money—a lot of “objects.”
Objects which are identical except for their state during a program’s
execution are grouped together into “classes of objects” and that’s where
the keyword class came from. Creating abstract data types (classes) is a
fundamental concept in object-oriented programming. Abstract data
types work almost exactly like built-in types: You can create variables of a
type (called objects or instances in object-oriented parlance) and
manipulate those variables (called sending messages or requests; you
send a message and the object figures out what to do with it). The
members (elements) of each class share some commonality: every account
has a balance, every teller can accept a deposit, etc. At the same time, each
member has its own state: each account has a different balance, each
teller has a name. Thus, the tellers, customers, accounts, transactions,
etc., can each be represented with a unique entity in the computer
program. This entity is the object, and each object belongs to a particular
class that defines its characteristics and behaviors. Feedback

So, although what we really do in object-oriented programming is create
new data types, virtually all object-oriented programming languages use

the “class” keyword. When you see the word “type” think “class” and vice
Versa3‘ Feedback

3 Some people make a distinction, stating that type determines the interface while class is
a particular implementation of that interface.

Chapter 1: Introduction to Objects 39

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_116
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_117
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_118

Since a class describes a set of objects that have identical characteristics
(data elements) and behaviors (functionality), a class is really a data type
because a floating point number, for example, also has a set of
characteristics and behaviors. The difference is that a programmer defines
a class to fit a problem rather than being forced to use an existing data
type that was designed to represent a unit of storage in a machine. You
extend the programming language by adding new data types specific to
your needs. The programming system welcomes the new classes and gives
them all the care and type-checking that it gives to built-in types. Feedback

The object-oriented approach is not limited to building simulations.
Whether or not you agree that any program is a simulation of the system
you're designing, the use of OOP techniques can easily reduce a large set
of problems to a simple solution. Feedback

Once a class is established, you can make as many objects of that class as
you like, and then manipulate those objects as if they are the elements
that exist in the problem you are trying to solve. Indeed, one of the
challenges of object-oriented programming is to create a one-to-one
mapping between the elements in the problem space and objects in the
solution space. Feedback

But how do you get an object to do useful work for you? There must be a
way to make a request of the object so that it will do something, such as
complete a transaction, draw something on the screen, or turn on a
switch. And each object can satisfy only certain requests. The requests you
can make of an object are defined by its interface, and the type is what
determines the interface. A simple example might be a representation of a
light bulb: Feedback

Light
Type Name
on()
off()
Interface brighten()
dim()

Light It = new Light();
I't.on();

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_119
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_120
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_121
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_122

The interface establishes what requests you can make for a particular
object. However, there must be code somewhere to satisfy that request.
This, along with the hidden data, comprises the implementation. From a
procedural programming standpoint, it’s not that complicated. A type has
a method associated with each possible request, and when you make a
particular request to an object, that method is called. This process is
usually summarized by saying that you “send a message” (make a request)
to an object, and the object figures out what to do with that message (it
executes code). Feedback

Here, the name of the type/class is Light, the name of this particular
Light object is It, and the requests that you can make of a Light object
are to turn it on, turn it off, make it brighter, or make it dimmer. You
create a Light object by defining a “reference” (It) for that object and
calling new to request a new object of that type. To send a message to the
object, you state the name of the object and connect it to the message
request with a period (dot). From the standpoint of the user of a
predefined class, that’s pretty much all there is to programming with
objects. Feedback

The diagram shown above follows the format of the Unified Modeling
Language (UML). Each class is represented by a box, with the type name
in the top portion of the box, any data members that you care to describe
in the middle portion of the box, and the methods (the functions that
belong to this object, which receive any messages you send to that object)
in the bottom portion of the box. Often, only the name of the class and the
public methods are shown in UML design diagrams, and so the middle
portion is not shown. If you're interested only in the class name, then the
bottom portion doesn’t need to be shown, either. Feedback

An object provides
services

While you’re trying to develop or understand a program design, one of the
best ways to think about objects is as “service providers.” Your program
itself will provide services to the user, and it will accomplish this by using
the services offered by other objects. Your goal is to produce (or even

Chapter 1: Introduction to Objects 41

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_123
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_124
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_125

better, locate in existing code libraries) a set of objects that provide the
ideal services to solve your problem. Feedback

A way to start doing this is to ask “if I could magically pull them out of a
hat, what objects would solve my problem right away?” For example,
suppose you are creating a bookkeeping program. You might imagine
some objects that contain pre-defined bookkeeping input screens, another
set of objects that perform bookkeeping calculations, and an object that
handles printing of checks and invoices on all different kinds of printers.
Maybe some of these objects already exist, and for the ones that don’t,
what would they look like? What services would those objects provide,
and what objects would they need to fulfill their obligations? If you keep
doing this, you will eventually reach a point where you can say either “that
object seems simple enough to sit down and write” or “I'm sure that object
must exist already.” This is a reasonable way to decompose a problem into
a set of objects. Feedback

Thinking of an object as a service provider has an additional benefit: it
helps to improve the cohesiveness of the object. High Cohesion is a
fundamental quality of softare design: it means that the various aspects of
a software component (such as an object, although this could also apply to
a method or a library of objects) “fit together” well. One problem people
have when designing objects is cramming too much functionality into one
object. For example, in your check printing module, you may decide you
need an object that knows all about formatting and printing. You'll
probably discover that this is too much for one object, and that what you
need is three or more objects. One object might be a catalog of all the
possible check layouts, which can be queried for information about how to
print a check. One object or set of objects could be a generic printing
interface that knows all about different kinds of printers (but nothing
about bookkeeping—this one is a candidate for buying rather than writing
yourself). And a third object could use the services of the other two to
accomplish the task. Thus, each object has a cohesive set of services it
offers. In a good object-oriented design, each object does one thing well,
but doesn’t try to do too much. As seen here, this not only allows the
discovery of objects that might be purchased (the printer interface object),
but it also produces the possibility of an object that might be reused
somewhere else (the catalog of check layouts). Feedback

42

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]A0437
mailto:TIJ3@MindView.net?Subject=[TIJ3]A0438
mailto:TIJ3@MindView.net?Subject=[TIJ3]A0439

Treating objects as service providers is a great simplifying tool, and it’s
very useful not only during the design process, but also when someone
else is trying to understand your code or reuse an object—if they can see
the value of the object based on what service it provides, it makes it much
easier to fit it into the design. Feedback

The hidden
implementation

It is helpful to break up the playing field into class creators (those who
create new data types) and client programmers4 (the class consumers
who use the data types in their applications). The goal of the client
programmer is to collect a toolbox full of classes to use for rapid
application development. The goal of the class creator is to build a class
that exposes only what’s necessary to the client programmer and keeps
everything else hidden. Why? Because if it’s hidden, the client
programmer can’t access it, which means that the class creator can change
the hidden portion at will without worrying about the impact on anyone
else. The hidden portion usually represents the tender insides of an object
that could easily be corrupted by a careless or uninformed client
programmer, so hiding the implementation reduces program bugs. Feedback

The concept of implementation hiding cannot be overemphasized. In any
relationship it’s important to have boundaries that are respected by all
parties involved. When you create a library, you establish a relationship
with the client programmer, who is also a programmer, but one who is
putting together an application by using your library, possibly to build a
bigger library. If all the members of a class are available to everyone, then
the client programmer can do anything with that class and there’s no way
to enforce rules. Even though you might really prefer that the client
programmer not directly manipulate some of the members of your class,
without access control there’s no way to prevent it. Everything’s naked to
the world. Feedback

4 I'm indebted to my friend Scott Meyers for this term.

Chapter 1: Introduction to Objects 43

mailto:TIJ3@MindView.net?Subject=[TIJ3]A0440
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_126
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_128

So the first reason for access control is to keep client programmers’ hands
off portions they shouldn’t touch—parts that are necessary for the internal
machinations of the data type but not part of the interface that users need
in order to solve their particular problems. This is actually a service to
users because they can easily see what’s important to them and what they
can ignore. Feedback

The second reason for access control is to allow the library designer to
change the internal workings of the class without worrying about how it
will affect the client programmer. For example, you might implement a
particular class in a simple fashion to ease development, and then later
discover that you need to rewrite it in order to make it run faster. If the
interface and implementation are clearly separated and protected, you
can accomplish this easily. Feedback

Java uses three explicit keywords to set the boundaries in a class: public,
private, and protected. Their use and meaning are quite
straightforward. These access specifiers determine who can use the
definitions that follow. public means the following element is available to
everyone. The private keyword, on the other hand, means that no one
can access that element except you, the creator of the type, inside
methods of that type. private is a brick wall between you and the client
programmer. If someone tries to access a private member, they’ll get a
compile-time error. protected acts like private, with the exception that
an inheriting class has access to protected members, but not private
members. Inheritance will be introduced shortly. Feedback

Java also has a “default” access, which comes into play if you don’t use
one of the aforementioned specifiers. This is usually called package
access because classes can access the members of other classes in the
same package, but outside of the package those same members appear to
be private. Feedback

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_129
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_130
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_131
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_132

Reusing the
implementation

Once a class has been created and tested, it should (ideally) represent a
useful unit of code. It turns out that this reusability is not nearly so easy to
achieve as many would hope; it takes experience and insight to produce a
reusable object design. But once you have such a design, it begs to be
reused. Code reuse is one of the greatest advantages that object-oriented
programming languages provide. Feedback

The simplest way to reuse a class is to just use an object of that class
directly, but you can also place an object of that class inside a new class.
We call this “creating a member object.” Your new class can be made up of
any number and type of other objects, in any combination that you need
to achieve the functionality desired in your new class. Because you are
composing a new class from existing classes, this concept is called
composition (if the composition happens dynamically, it’s usually called
aggregation). Composition is often referred to as a “has-a” relationship,
as in “a car has an engine.” Feedback

Car Engine

(The above UML diagram indicates composition with the filled diamond,
which states there is one car. I will typically use a simpler form: just a line,
without the diamond, to indicate an association.5) Feedback

Composition comes with a great deal of flexibility. The member objects of
your new class are typically private, making them inaccessible to the client
programmers who are using the class. This allows you to change those
members without disturbing existing client code. You can also change the
member objects at run time, to dynamically change the behavior of your

5 This is usually enough detail for most diagrams, and you don’t need to get specific about
whether you're using aggregation or composition.

Chapter 1: Introduction to Objects 45

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_133
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_134
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_135

program. Inheritance, which is described next, does not have this
flexibility since the compiler must place compile-time restrictions on
classes created with inheritance. Feedback

Because inheritance is so important in object-oriented programming it is
often highly emphasized, and the new programmer can get the idea that
inheritance should be used everywhere. This can result in awkward and
overly complicated designs. Instead, you should first look to composition
when creating new classes, since it is simpler and more flexible. If you
take this approach, your designs will be cleaner. Once you've had some

experience, it will be reasonably obvious when you need inheritance.
Feedback

Inheritance:
reusing the interface

By itself, the idea of an object is a convenient tool. It allows you to
package data and functionality together by concept, so you can represent
an appropriate problem-space idea rather than being forced to use the
idioms of the underlying machine. These concepts are expressed as
fundamental units in the programming language by using the class
keyword. Feedback

It seems a pity, however, to go to all the trouble to create a class and then
be forced to create a brand new one that might have similar functionality.
It’s nicer if we can take the existing class, clone it, and then make
additions and modifications to the clone. This is effectively what you get
with inheritance, with the exception that if the original class (called the
base class or superclass or parent class) is changed, the modified “clone”
(called the derived class or inherited class or subclass or child class) also
reflects those changes. Feedback

46 Thinking in Java www.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_136
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_137
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_138
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_139

Base

!

Derived

(The arrow in the above UML diagram points from the derived class to the
base class. As you will see, there is commonly more than one derived
ClaSS.) Feedback

A type does more than describe the constraints on a set of objects; it also
has a relationship with other types. Two types can have characteristics
and behaviors in common, but one type may contain more characteristics
than another and may also handle more messages (or handle them
differently). Inheritance expresses this similarity between types using the
concept of base types and derived types. A base type contains all of the
characteristics and behaviors that are shared among the types derived
from it. You create a base type to represent the core of your ideas about
some objects in your system. From the base type, you derive other types to
express the different ways that this core can be realized. Feedback

For example, a trash-recycling machine sorts pieces of trash. The base
type is “trash,” and each piece of trash has a weight, a value, and so on,
and can be shredded, melted, or decomposed. From this, more specific
types of trash are derived that may have additional characteristics (a
bottle has a color) or behaviors (an aluminum can may be crushed, a steel
can is magnetic). In addition, some behaviors may be different (the value
of paper depends on its type and condition). Using inheritance, you can
build a type hierarchy that expresses the problem you're trying to solve in
terms of its types. Feedback

A second example is the classic “shape” example, perhaps used in a
computer-aided design system or game simulation. The base type is
“shape,” and each shape has a size, a color, a position, and so on. Each
shape can be drawn, erased, moved, colored, etc. From this, specific types
of shapes are derived (inherited): circle, square, triangle, and so on, each

Chapter 1: Introduction to Objects 47

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_140
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_141
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_142

of which may have additional characteristics and behaviors. Certain
shapes can be flipped, for example. Some behaviors may be different, such
as when you want to calculate the area of a shape. The type hierarchy
embodies both the similarities and differences between the shapes. Feedback

Shape

draw()
erase()
move()
getColor()
setColor()

N

Circle Square Triangle

Casting the solution in the same terms as the problem is tremendously
beneficial because you don’t need a lot of intermediate models to get from
a description of the problem to a description of the solution. With objects,
the type hierarchy is the primary model, so you go directly from the
description of the system in the real world to the description of the system
in code. Indeed, one of the difficulties people have with object-oriented
design is that it’s too simple to get from the beginning to the end. A mind
trained to look for complex solutions can initially be stumped by this
simplicity. Feedback

When you inherit from an existing type, you create a new type. This new
type contains not only all the members of the existing type (although the
private ones are hidden away and inaccessible), but more importantly it
duplicates the interface of the base class. That is, all the messages you can
send to objects of the base class you can also send to objects of the derived
class. Since we know the type of a class by the messages we can send to it,
this means that the derived class is the same type as the base class. In the
previous example, “a circle is a shape.” This type equivalence via

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_143
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_144

inheritance is one of the fundamental gateways in understanding the
meaning of object-oriented programming,. Feedback

Since both the base class and derived class have the same fundamental
interface, there must be some implementation to go along with that
interface. That is, there must be some code to execute when an object
receives a particular message. If you simply inherit a class and don’t do
anything else, the methods from the base-class interface come right along
into the derived class. That means objects of the derived class have not
only the same type, they also have the same behavior, which isn’t
particularly interesting. Feedback

You have two ways to differentiate your new derived class from the
original base class. The first is quite straightforward: You simply add
brand new methods to the derived class. These new methods are not part
of the base class interface. This means that the base class simply didn’t do
as much as you wanted it to, so you added more methods. This simple and
primitive use for inheritance is, at times, the perfect solution to your
problem. However, you should look closely for the possibility that your
base class might also need these additional methods. This process of
discovery and iteration of your design happens regularly in object-
oriented programming. Feedback

Shape

draw()
erase()
move()
getColor()
setColor()

1\

Circle Square Triangle

FlipVertical()
FlipHorizontal()

Chapter 1: Introduction to Objects 49

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_145
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_146
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_147

Although inheritance may sometimes imply (especially in Java, where the
keyword for inheritance is extends) that you are going to add new
methods to the interface, that’s not necessarily true. The second and more
important way to differentiate your new class is to change the behavior of
an existing base-class method. This is referred to as overriding that
method. Feedback

Shape

draw()
erase()
move()
getColor()
setColor()

N

Circle Square Triangle

draw() draw() draw()
erase() erase() erase()

To override a method, you simply create a new definition for the method
in the derived class. You're saying, “I'm using the same interface method
here, but I want it to do something different for my new type.” Feedback

Is-a vs. is-like-a relationships

There’s a certain debate that can occur about inheritance: Should
inheritance override only base-class methods (and not add new methods
that aren’t in the base class)? This would mean that the derived type is
exactly the same type as the base class since it has exactly the same
interface. As a result, you can exactly substitute an object of the derived
class for an object of the base class. This can be thought of as pure
substitution, and it’s often referred to as the substitution principle. In a
sense, this is the ideal way to treat inheritance. We often refer to the
relationship between the base class and derived classes in this case as an

50

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_148
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_149

is-a relationship, because you can say “a circle is a shape.” A test for
inheritance is to determine whether you can state the is-a relationship
about the classes and have it make sense. Feedback

There are times when you must add new interface elements to a derived
type, thus extending the interface and creating a new type. The new type
can still be substituted for the base type, but the substitution isn’t perfect
because your new methods are not accessible from the base type. This can
be described as an is-like-a relationship (my term). The new type has the
interface of the old type but it also contains other methods, so you can’t
really say it’s exactly the same. For example, consider an air conditioner.
Suppose your house is wired with all the controls for cooling; that is, it has
an interface that allows you to control cooling. Imagine that the air
conditioner breaks down and you replace it with a heat pump, which can
both heat and cool. The heat pump is-like-an air conditioner, but it can do
more. Because the control system of your house is designed only to
control cooling, it is restricted to communication with the cooling part of
the new object. The interface of the new object has been extended, and the

existing system doesn’t know about anything except the original interface.
Feedback

Thermostat Controls Cooling System

P

lowerTemperature() cool()

Air Conditioner Heat Pump

cool() cool()
heat()

Of course, once you see this design it becomes clear that the base class
“cooling system” is not general enough, and should be renamed to
“temperature control system” so that it can also include heating—at which
point the substitution principle will work. However, the diagram above is
an example of what can happen with design in the real world. Feedback

Chapter 1: Introduction to Objects 51

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_150
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_151
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_152

When you see the substitution principle it’s easy to feel like this approach
(pure substitution) is the only way to do things, and in fact it is nice if
your design works out that way. But you’ll find that there are times when
it’s equally clear that you must add new methods to the interface of a

derived class. With inspection both cases should be reasonably obvious.
Feedback

Interchangeable objects

with polymorphism

When dealing with type hierarchies, you often want to treat an object not
as the specific type that it is, but instead as its base type. This allows you
to write code that doesn’t depend on specific types. In the shape example,
methods manipulate generic shapes without respect to whether they’re
circles, squares, triangles, or some shape that hasn’t even been defined
yet. All shapes can be drawn, erased, and moved, so these methods simply
send a message to a shape object; they don’t worry about how the object
copes with the message. Feedback

Such code is unaffected by the addition of new types, and adding new
types is the most common way to extend an object-oriented program to
handle new situations. For example, you can derive a new subtype of
shape called pentagon without modifying the methods that deal only with
generic shapes. This ability to easily extend a design by deriving new
subtypes is one of the essential ways to encapsulate change. This greatly
improves designs while reducing the cost of software maintenance. Feedback

There’s a problem, however, with attempting to treat derived-type objects
as their generic base types (circles as shapes, bicycles as vehicles,
cormorants as birds, etc.). If a method is going to tell a generic shape to
draw itself, or a generic vehicle to steer, or a generic bird to move, the
compiler cannot know at compile time precisely what piece of code will be
executed. That’s the whole point—when the message is sent, the
programmer doesn’t want to know what piece of code will be executed;
the draw method can be applied equally to a circle, a square, or a triangle,
and the object will execute the proper code depending on its specific type.
If you don’t have to know what piece of code will be executed, then when

52

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_153
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_154
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_155

you add a new subtype, the code it executes can be different without
requiring changes to the method call. Therefore, the compiler cannot
know precisely what piece of code is executed, so what does it do? For
example, in the following diagram the BirdController object just works
with generic Bird objects, and does not know what exact type they are.
This is convenient from BirdController’s perspective because it doesn’t
have to write special code to determine the exact type of Bird it’s working
with, or that Bird’s behavior. So how does it happen that, when move()
is called while ignoring the specific type of Bird, the right behavior will

occur (a Goose runs, flies, or swims, and a Penguin runs or swims)?
Feedback

BirdController Bird

What happens
reLocate() when move() is move()

called? ‘ 4 ‘

Goose Penguin

move() move()

The answer is the primary twist in object-oriented programming: the
compiler cannot make a function call in the traditional sense. The
function call generated by a non-OOP compiler causes what is called early
binding, a term you may not have heard before because you've never
thought about it any other way. It means the compiler generates a call to a
specific function name, and the linker resolves this call to the absolute
address of the code to be executed. In OOP, the program cannot
determine the address of the code until run time, so some other scheme is
necessary when a message is sent to a generic object. Feedback

To solve the problem, object-oriented languages use the concept of late
binding. When you send a message to an object, the code being called isn’t
determined until run time. The compiler does ensure that the method
exists and performs type checking on the arguments and return value (a
language in which this isn’t true is called weakly typed), but it doesn’t
know the exact code to execute. Feedback

Chapter 1: Introduction to Objects 53

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_156
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_157
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_158

To perform late binding, Java uses a special bit of code in lieu of the
absolute call. This code calculates the address of the method body, using
information stored in the object (this process is covered in great detail in
Chapter 7). Thus, each object can behave differently according to the
contents of that special bit of code. When you send a message to an object,
the object actually does figure out what to do with that message. Feedback

In some languages you must explicitly state that you want a method to
have the flexibility of late-binding properties (C++ uses the virtual
keyword to do this). In these languages, by default, methods are not
dynamically bound. In Java, dynamic binding is the default behavior and
you don’t need to remember to add any extra keywords in order to get
polymorphism. Feedback

Consider the shape example. The family of classes (all based on the same
uniform interface) was diagrammed earlier in this chapter. To
demonstrate polymorphism, we want to write a single piece of code that
ignores the specific details of type and talks only to the base class. That
code is decoupled from type-specific information, and thus is simpler to
write and easier to understand. And, if a new type—a Hexagon, for
example—is added through inheritance, the code you write will work just
as well for the new type of Shape as it did on the existing types. Thus, the
program is extensible. Feedback

If you write a method in Java (as you will soon learn how to do): Feedback

voi d doStuf f (Shape s) {
s.erase();
1.,
s.draw();

}

This method speaks to any Shape, so it is independent of the specific type
of object that it’s drawing and erasing. If some other part of the program
uses the doStuff() method: Feedback

Crcle c =newCircle();
Triangle t = new Triangle();
Line | = new Line();
doStuff(c);

doStuff(t);

doStuff(l);

54

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_159
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_160
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_161
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_162
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_163

the calls to doStuff() automatically work correctly, regardless of the
exact type of the object. Feedback

This is a rather amazing trick. Consider the line:
| doSt uff (c);

What’s happening here is that a Circle is being passed into a method
that’s expecting a Shape. Since a Circle is a Shape it can be treated as
one by doStuff(). That is, any message that doStuff() can send to a

Shape, a Circle can accept. So it is a completely safe and logical thing to
do. Feedback

We call this process of treating a derived type as though it were its base
type upcasting. The name cast is used in the sense of casting into a mold
and the up comes from the way the inheritance diagram is typically
arranged, with the base type at the top and the derived classes fanning out
downward. Thus, casting to a base type is moving up the inheritance
diagram: “upcasting.” Feedback

A Shape
"Upcasting” |
[}
I | 1
[}
- [}
i
L Circle Square Triangle

An object-oriented program contains some upcasting somewhere, because
that’s how you decouple yourself from knowing about the exact type
you're working with. Look at the code in doStuff(): Feedback

s.erase();
/1

s.draw();
Notice that it doesn’t say “If you're a Circle, do this, if you're a Square,

do that, etc.” If you write that kind of code, which checks for all the
possible types that a Shape can actually be, it’s messy and you need to

Chapter 1: Introduction to Objects 55

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_164
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_165
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_166
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_167

change it every time you add a new kind of Shape. Here, you just say
“You're a shape, I know you can erase() and draw() yourself, do it, and
take care of the details correctly.” Feedback

What’s impressive about the code in doStuff() is that, somehow, the
right thing happens. Calling draw() for Circle causes different code to
be executed than when calling draw() for a Square or a Line, but when
the draw() message is sent to an anonymous Shape, the correct
behavior occurs based on the actual type of the Shape. This is amazing
because, as mentioned earlier, when the Java compiler is compiling the
code for doStuff(), it cannot know exactly what types it is dealing with.
So ordinarily, you’d expect it to end up calling the version of erase() and
draw() for the base class Shape, and not for the specific Circle,
Square, or Line. And yet the right thing happens because of
polymorphism. The compiler and run-time system handle the details; all
you need to know right now is that it does happen, and more importantly,
how to design with it. When you send a message to an object, the object
will do the right thing, even when upcasting is involved. Feedback

Abstract base classes and
interfaces

Often in a design, you want the base class to present only an interface for
its derived classes. That is, you don’t want anyone to actually create an
object of the base class, only to upcast to it so that its interface can be
used. This is accomplished by making that class abstract using the
abstract keyword. If anyone tries to make an object of an abstract class,

the compiler prevents them. This is a tool to enforce a particular design.
Feedback

You can also use the abstract keyword to describe a method that hasn’t
been implemented yet—as a stub indicating “here is an interface method
for all types inherited from this class, but at this point I don’t have any
implementation for it.” An abstract method may be created only inside
an abstract class. When the class is inherited, that method must be
implemented, or the inheriting class becomes abstract as well. Creating
an abstract method allows you to put a method in an interface without

56

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_168
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_169
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_170

being forced to provide a possibly meaningless body of code for that
method. Feedback

The interface keyword takes the concept of an abstract class one step
further by preventing any method definitions at all. The interface is a
very handy and commonly used tool, as it provides the perfect separation
of interface and implementation. In addition, you can combine many
interfaces together, if you wish, whereas inheriting from multiple regular
classes or abstract classes is not possible. Feedback

Object creation, use &
lifetimes

Technically, OOP is just about abstract data typing, inheritance, and
polymorphism, but other issues can be at least as important. This section
will cover these issues. Feedback

One of the most important factors is the way objects are created and
destroyed. Where is the data for an object and how is the lifetime of the
object controlled? There are different philosophies at work here. C++
takes the approach that control of efficiency is the most important issue,
so it gives the programmer a choice. For maximum run-time speed, the
storage and lifetime can be determined while the program is being
written, by placing the objects on the stack (these are sometimes called
automatic or scoped variables) or in the static storage area. This places a
priority on the speed of storage allocation and release, and control of
these can be very valuable in some situations. However, you sacrifice
flexibility because you must know the exact quantity, lifetime, and type of
objects while you're writing the program. If you are trying to solve a more
general problem such as computer-aided design, warehouse management,
or air-traffic control, this is too restrictive. Feedback

The second approach is to create objects dynamically in a pool of memory
called the heap. In this approach, you don't know until run time how
many objects you need, what their lifetime is, or what their exact type is.
Those are determined at the spur of the moment while the program is
running. If you need a new object, you simply make it on the heap at the

Chapter 1: Introduction to Objects 57

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_171
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_172
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_173
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_174

point that you need it. Because the storage is managed dynamically, at run
time, the amount of time required to allocate storage on the heap can be
noticeably longer than the time to create storage on the stack. (Creating
storage on the stack is often a single assembly instruction to move the
stack pointer down, and another to move it back up. The time to create
heap storage depends on the design of the storage mechanism.) The
dynamic approach makes the generally logical assumption that objects
tend to be complicated, so the extra overhead of finding storage and
releasing that storage will not have an important impact on the creation of
an object. In addition, the greater flexibility is essential to solve the
general programming problem. Feedback

Java uses the second approach, exclusively®. Every time you want to
create an object, you use the new keyword to build a dynamic instance of
that object. Feedback

There's another issue, however, and that's the lifetime of an object. With
languages that allow objects to be created on the stack, the compiler
determines how long the object lasts and can automatically destroy it.
However, if you create it on the heap the compiler has no knowledge of its
lifetime. In a language like C++, you must determine programmatically
when to destroy the object, which can lead to memory leaks if you don’t
do it correctly (and this is a common problem in C++ programs). Java
provides a feature called a garbage collector that automatically discovers
when an object is no longer in use and destroys it. A garbage collector is
much more convenient because it reduces the number of issues that you
must track and the code you must write. More important, the garbage
collector provides a much higher level of insurance against the insidious
problem of memory leaks (which has brought many a C++ project to its
knees). Feedback

Collections and iterators

If you don’t know how many objects you're going to need to solve a
particular problem, or how long they will last, you also don’t know how to
store those objects. How can you know how much space to create for

6 Primitive types, which you’ll learn about later, are a special case.

58

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_175
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_176
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_177

those objects? You can’t, since that information isn’t known until run
time. Feedback

The solution to most problems in object-oriented design seems flippant:
you create another type of object. The new type of object that solves this
particular problem holds references to other objects. Of course, you can
do the same thing with an array, which is available in most languages. But
this new object, generally called a container (also called a collection, but
the Java library uses that term in a different sense so this book will use
“container”), will expand itself whenever necessary to accommodate
everything you place inside it. So you don’t need to know how many
objects you're going to hold in a container. Just create a container object
and let it take care of the details. Feedback

Fortunately, a good OOP language comes with a set of containers as part
of the package. In C++, it’s part of the Standard C++ Library and is
sometimes called the Standard Template Library (STL). Object Pascal has
containers in its Visual Component Library (VCL). Smalltalk has a very
complete set of containers. Java also has containers in its standard
library. In some libraries, a generic container is considered good enough
for all needs, and in others (Java, for example) the library has different
types of containers for different needs: several different kinds of List
classes (to hold sequences), Map classes (also known as associative
arrays, to associate objects with other objects), and Set classes (to hold
one of each type of object). Container libraries may also include queues,
trees, stacks, etc. Feedback

All containers have some way to put things in and get things out; there are
usually methods to add elements to a container, and others to fetch those
elements back out. But fetching elements can be more problematic,
because a single-selection method is restrictive. What if you want to

manipulate or compare a set of elements in the container instead of just
one? Feedback

The solution is an iterator, which is an object whose job is to select the
elements within a container and present them to the user of the iterator.
As a class, it also provides a level of abstraction. This abstraction can be
used to separate the details of the container from the code that’s accessing
that container. The container, via the iterator, is abstracted to be simply a

Chapter 1: Introduction to Objects 59

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_179
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_180
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_181
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_182

sequence. The iterator allows you to traverse that sequence without
worrying about the underlying structure—that is, whether it’s an
ArrayList, a LinkedList, a Stack, or something else. This gives you the
flexibility to easily change the underlying data structure without
disturbing the code in your program. Java began (in version 1.0 and 1.1)
with a standard iterator, called Enumeration, for all of its container
classes. Java 2 added a much more complete container library that
contains an iterator called Iterator that does more than the older
Enumeration. feedback

From a design standpoint, all you really want is a sequence that can be
manipulated to solve your problem. If a single type of sequence satisfied
all of your needs, there’d be no reason to have different kinds. There are
two reasons that you need a choice of containers. First, containers provide
different types of interfaces and external behavior. A stack has a different
interface and behavior than that of a queue, which is different from that of
a set or a list. One of these might provide a more flexible solution to your
problem than the other. Second, different containers have different
efficiencies for certain operations. The best example compare two types of
List: an ArrayList and a LinkedList. Both are simple sequences that
can have identical interfaces and external behaviors. But certain
operations can have radically different costs. Randomly accessing
elements in an ArrayList is a constant-time operation; it takes the same
amount of time regardless of the element you select. However, in a
LinkedList it is expensive to move through the list to randomly select an
element, and it takes longer to find an element that is further down the
list. On the other hand, if you want to insert an element in the middle of a
sequence, it’s cheaper in a LinkedList than in an ArrayList. These and
other operations have different efficiencies depending on the underlying
structure of the sequence. In the design phase, you might start with a
LinkedList and, when tuning for performance, change to an ArrayList.
Because of the abstraction via the base class List and via iterators, you

can change from one to the other with minimal impact on your code.
Feedback

The singly rooted hierarchy

One of the issues in OOP that has become especially prominent since the
introduction of C++ is whether all classes should ultimately be inherited

60

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_183
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_184

from a single base class. In Java (as with virtually all other OOP
languages) the answer is “yes” and the name of this ultimate base class is
simply Object. It turns out that the benefits of the singly rooted hierarchy
are many. Feedback

All objects in a singly rooted hierarchy have an interface in common, so
they are all ultimately the same fundamental type. The alternative
(provided by C++) is that you don’t know that everything is the same
basic type. From a backward-compatibility standpoint this fits the model
of C better and can be thought of as less restrictive, but when you want to
do full-on object-oriented programming you must then build your own
hierarchy to provide the same convenience that’s built into other OOP
languages. And in any new class library you acquire, some other
incompatible interface will be used. It requires effort (and possibly
multiple inheritance) to work the new interface into your design. Is the
extra “flexibility” of C++ worth it? If you need it—if you have a large
investment in C—it’s quite valuable. If you're starting from scratch, other
alternatives such as Java can often be more productive. Feedback

All objects in a singly rooted hierarchy (such as Java provides) can be
guaranteed to have certain functionality. You know you can perform
certain basic operations on every object in your system. A singly rooted
hierarchy, along with creating all objects on the heap, greatly simplifies
argument passing (one of the more complex topics in C++). Feedback

A singly rooted hierarchy makes it much easier to implement a garbage
collector (which is conveniently built into Java). The necessary support
can be installed in the base class, and the garbage collector can thus send
the appropriate messages to every object in the system. Without a singly
rooted hierarchy and a system to manipulate an object via a reference, it is
difficult to implement a garbage collector. Feedback

Since run time type information is guaranteed to be in all objects, you’ll
never end up with an object whose type you cannot determine. This is
especially important with system level operations, such as exception
handling, and to allow greater flexibility in programming,. Feedback

Chapter 1: Introduction to Objects 61

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_186
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_187
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_188
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_189
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_190

Downcasting vs.
templates/generics

To make these containers reusable, they hold the one universal type in
Java: Object. The singly rooted hierarchy means that everything is an
Object, so a container that holds Objects can hold anything?. This makes
containers easy to reuse. Feedback

To use such a container, you simply add object references to it, and later
ask for them back. But, since the container holds only Objects, when you
add your object reference into the container it is upcast to Object, thus
losing its identity. When you fetch it back, you get an Object reference,
and not a reference to the type that you put in. So how do you turn it back
into something that has the useful interface of the object that you put into
the container? Feedback

Here, the cast is used again, but this time you’re not casting up the
inheritance hierarchy to a more general type, you cast down the hierarchy
to a more specific type. This manner of casting is called downcasting.
With upcasting, you know, for example, that a Circle is a type of Shape
so it’s safe to upcast, but you don’t know that an Object is necessarily a
Circle or a Shape so it’s hardly safe to downcast unless you know exactly
what you’re dealing with. Feedback

It’s not completely dangerous, however, because if you downcast to the
wrong thing you’ll get a run-time error called an exception, which will be
described shortly. When you fetch object references from a container,
though, you must have some way to remember exactly what they are so
you can perform a proper downcast. Feedback

Downcasting and the run-time checks require extra time for the running
program, and extra effort from the programmer. Wouldn’t it make sense
to somehow create the container so that it knows the types that it holds,
eliminating the need for the downcast and a possible mistake? The
solution is called a parameterized type mechanism. A parameterized type
is a class that the compiler can automatically customize to work with

7 Except, unfortunately, for primitives. This is discussed in detail later in the book.

62

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_192
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_193
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_194
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_195

particular types. For example, with a parameterized container, the
compiler could customize that container so that it would accept only
Shapes and fetch only Shapes. Feedback

Parameterized types are an important part of C++, partly because C++
has no singly rooted hierarchy. In C++, the keyword that implements
parameterized types is “template.” Java currently has no parameterized
types since it is possible for it to get by—however awkwardly—using the
singly rooted hierarchy. However, a current proposal for parameterized
types uses a syntax that is strikingly similar to C++ templates, and we can
expect to see parameterized types (which will be called generics) in the
next version of Java. Feedback

Ensuring proper cleanup

Each object requires resources in order to exist, most notably memory.
When an object is no longer needed it must be cleaned up so that these
resources are released for reuse. In simple programming situations the
question of how an object is cleaned up doesn’t seem too challenging: you
create the object, use it for as long as it’s needed, and then it should be
destroyed. However, it’s not hard to encounter situations in which the
situation is more complex. Feedback

Suppose, for example, you are designing a system to manage air traffic for
an airport. (The same model might also work for managing crates in a
warehouse, or a video rental system, or a kennel for boarding pets.) At
first it seems simple: make a container to hold airplanes, then create a
new airplane and place it in the container for each airplane that enters the
air-traffic-control zone. For cleanup, simply delete the appropriate
airplane object when a plane leaves the zone. Feedback

But perhaps you have some other system to record data about the planes;
perhaps data that doesn’t require such immediate attention as the main
controller function. Maybe it’s a record of the flight plans of all the small
planes that leave the airport. So you have a second container of small
planes, and whenever you create a plane object you also put it in this
second container if it’s a small plane. Then some background process

performs operations on the objects in this container during idle moments.
Feedback

Chapter 1: Introduction to Objects 63

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_196
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_197
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_198
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_199
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_200

Now the problem is more difficult: how can you possibly know when to
destroy the objects? When you’re done with the object, some other part of
the system might not be. This same problem can arise in a number of
other situations, and in programming systems (such as C++) in which you
must explicitly delete an object when you're done with it this can become
quite complex. Feedback

With Java, the garbage collector is designed to take care of the problem of
releasing the memory (although this doesn’t include other aspects of
cleaning up an object). The garbage collector “knows” when an object is
no longer in use, and it then automatically releases the memory for that
object. This (combined with the fact that all objects are inherited from the
single root class Object and that you can create objects only one way, on
the heap) makes the process of programming in Java much simpler than
programming in C++. You have far fewer decisions to make and hurdles
to overcome. Feedback

Garbage collectors vs. efficiency and
flexibility

If all this is such a good idea, why didn’t they do the same thing in C++?
Well of course there’s a price you pay for all this programming
convenience, and that price is run time overhead. As mentioned before, in
C++ you can create objects on the stack, and in this case they’re
automatically cleaned up (but you don’t have the flexibility of creating as
many as you want at run time). Creating objects on the stack is the most
efficient way to allocate storage for objects and to free that storage.
Creating objects on the heap can be much more expensive. Always
inheriting from a base class and making all method calls polymorphic also
exacts a small toll. But the garbage collector is a particular problem
because you never quite know when it’s going to start up or how long it
will take. This means that there’s an inconsistency in the rate of execution
of a Java program, so you can’t use it in certain situations, such as when
the rate of execution of a program is uniformly critical. (These are
generally called real time programs, although not all real time
programming problems are this stringent.) Feedback

The designers of the C++ language, trying to woo C programmers (and
most successfully, at that), did not want to add any features to the

64

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_201
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_202
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_203

language that would impact the speed or the use of C++ in any situation
where programmers might otherwise choose C. This goal was realized, but
at the price of greater complexity when programming in C++. Java is
simpler than C++, but the trade-off is in efficiency and sometimes
applicability. For a significant portion of programming problems,
however, Java is the superior choice. Feedback

Exception handling:
dealing with errors

Ever since the beginning of programming languages, error handling has
been one of the most difficult issues. Because it’s so hard to design a good
error handling scheme, many languages simply ignore the issue, passing
the problem on to library designers who come up with halfway measures
that work in many situations but that can easily be circumvented,
generally by just ignoring them. A major problem with most error
handling schemes is that they rely on programmer vigilance in following
an agreed-upon convention that is not enforced by the language. If the
programmer is not vigilant—often the case if they are in a hurry—these
schemes can easily be forgotten. Feedback

Exception handling wires error handling directly into the programming
language and sometimes even the operating system. An exception is an
object that is “thrown” from the site of the error and can be “caught” by an
appropriate exception handler designed to handle that particular type of
error. It’s as if exception handling is a different, parallel path of execution
that can be taken when things go wrong. And because it uses a separate
execution path, it doesn’t need to interfere with your normally executing
code. This makes that code simpler to write since you aren’t constantly
forced to check for errors. In addition, a thrown exception is unlike an
error value that’s returned from a method or a flag that’s set by a method
in order to indicate an error condition—these can be ignored. An
exception cannot be ignored, so it’s guaranteed to be dealt with at some
point. Finally, exceptions provide a way to reliably recover from a bad
situation. Instead of just exiting the program you are often able to set
things right and restore execution, which produces much more robust
programs. Feedback

Chapter 1: Introduction to Objects 65

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_204
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_205
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_206

Java’s exception handling stands out among programming languages,
because in Java, exception handling was wired in from the beginning and
you're forced to use it. If you don’t write your code to properly handle
exceptions, you’'ll get a compile-time error message. This guaranteed
consistency can sometimes make error handling much easier. Feedback

It’s worth noting that exception handling isn’t an object-oriented feature,
although in object-oriented languages the exception is normally
represented with an object. Exception handling existed before object-
oriented languages. Feedback

Concurrency

A fundamental concept in computer programming is the idea of handling
more than one task at a time. Many programming problems require that
the program be able to stop what it’s doing, deal with some other
problem, and then return to the main process. The solution has been
approached in many ways. Initially, programmers with low-level
knowledge of the machine wrote interrupt service routines and the
suspension of the main process was initiated through a hardware
interrupt. Although this worked well, it was difficult and nonportable, so

it made moving a program to a new type of machine slow and expensive.
Feedback

Sometimes interrupts are necessary for handling time-critical tasks, but
there’s a large class of problems in which you’re simply trying to partition
the problem into separately running pieces so that the whole program can
be more responsive. Within a program, these separately running pieces
are called threads, and the general concept is called concurrency or
multithreading. A common example of multithreading is the user
interface. By using threads, a user can press a button and get a quick
response rather than being forced to wait until the program finishes its
current task. Feedback

Ordinarily, threads are just a way to allocate the time of a single
processor. But if the operating system supports multiple processors, each
thread can be assigned to a different processor and they can truly run in
parallel. One of the convenient features of multithreading at the language
level is that the programmer doesn’t need to worry about whether there

66

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_207
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_208
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_209
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_210

are many processors or just one. The program is logically divided into
threads and if the machine has more than one processor then the program
runs faster, without any special adjustments. Feedback

All this makes threading sound pretty simple. There is a catch: shared
resources. If you have more than one thread running that’s expecting to
access the same resource you have a problem. For example, two processes
can’t simultaneously send information to a printer. To solve the problem,
resources that can be shared, such as the printer, must be locked while
they are being used. So a thread locks a resource, completes its task, and
then releases the lock so that someone else can use the resource. Feedback

Java’s threading is built into the language, which makes a complicated
subject much simpler. The threading is supported on an object level, so
one thread of execution is represented by one object. Java also provides
limited resource locking. It can lock the memory of any object (which is,
after all, one kind of shared resource) so that only one thread can use it at
a time. This is accomplished with the synchronized keyword. Other
types of resources must be locked explicitly by the programmer, typically
by creating an object to represent the lock that all threads must check
before accessing that resource. Feedback

Persistence

When you create an object, it exists for as long as you need it, but under
no circumstances does it exist when the program terminates. While this
makes sense at first, there are situations in which it would be incredibly
useful if an object could exist and hold its information even while the
program wasn’t running. Then the next time you started the program, the
object would be there and it would have the same information it had the
previous time the program was running. Of course, you can get a similar
effect by writing the information to a file or to a database, but in the spirit
of making everything an object it would be quite convenient to be able to

declare an object persistent and have all the details taken care of for you.
Feedback

Java provides support for “lightweight persistence,” which means that you
can easily store objects on disk and later retrieve them. The reason it’s
“lightweight” is that you're still forced to make explicit calls to do the

Chapter 1: Introduction to Objects 67

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_211
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_212
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_213
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_214

storage and retrieval. Lightweight persistence can be implemented both
through object serialization (shown in Chapter 12) and Java Data Objects
(JDO, shown in Thinking in Enterprise Java). Feedback

Java and the Internet

If Java is, in fact, yet another computer programming language, you may
question why it is so important and why it is being promoted as a
revolutionary step in computer programming. The answer isn’t
immediately obvious if you're coming from a traditional programming
perspective. Although Java is very useful for solving traditional stand-
alone programming problems, it is also important because it will solve
programming problems on the World Wide Web. Feedback

What is the Web?

The Web can seem a bit of a mystery at first, with all this talk of “surfing,”
“presence,” and “home pages.” It’s helpful to step back and see what it
really is, but to do this you must understand client/server systems,
another aspect of computing that’s full of confusing issues. Feedback

Client/Server computing

The primary idea of a client/server system is that you have a central
repository of information—some kind of data, often in a database—that
you want to distribute on demand to some set of people or machines. A
key to the client/server concept is that the repository of information is
centrally located so that it can be changed and so that those changes will
propagate out to the information consumers. Taken together, the
information repository, the software that distributes the information, and
the machine(s) where the information and software reside is called the
server. The software that resides on the remote machine, communicates
with the server, fetches the information, processes it, and then displays it
on the remote machine is called the client. Feedback

The basic concept of client/server computing, then, is not so complicated.
The problems arise because you have a single server trying to serve many
clients at once. Generally, a database management system is involved so
the designer “balances” the layout of data into tables for optimal use. In

68 Thinking in Java www.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_215
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_216
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_217
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_218

addition, systems often allow a client to insert new information into a
server. This means you must ensure that one client’s new data doesn’t
walk over another client’s new data, or that data isn’t lost in the process of
adding it to the database (this is called transaction processing). As client
software changes, it must be built, debugged, and installed on the client
machines, which turns out to be more complicated and expensive than
you might think. It’s especially problematic to support multiple types of
computers and operating systems. Finally, there’s the all-important
performance issue: you might have hundreds of clients making requests
of your server at any one time, and so any small delay is crucial. To
minimize latency, programmers work hard to offload processing tasks,
often to the client machine, but sometimes to other machines at the server
site, using so-called middleware. (Middleware is also used to improve
maintainability.) Feedback

The simple idea of distributing information has so many layers of
complexity that the whole problem can seem hopelessly enigmatic. And
yet it’s crucial: client/server computing accounts for roughly half of all
programming activities. It’s responsible for everything from taking orders
and credit-card transactions to the distribution of any kind of data—stock
market, scientific, government, you name it. What we’ve come up with in
the past is individual solutions to individual problems, inventing a new
solution each time. These were hard to create and hard to use, and the
user had to learn a new interface for each one. The entire client/server
problem needs to be solved in a big way. Feedback

The Web as a giant server

The Web is actually one giant client/server system. It’s a bit worse than
that, since you have all the servers and clients coexisting on a single
network at once. You don’t need to know that, since all you care about is
connecting to and interacting with one server at a time (even though you

might be hopping around the world in your search for the correct server).
Feedback

Initially it was a simple one-way process. You made a request of a server
and it handed you a file, which your machine’s browser software (i.e., the
client) would interpret by formatting onto your local machine. But in
short order people began wanting to do more than just deliver pages from

Chapter 1: Introduction to Objects 69

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_219
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_220
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_221

a server. They wanted full client/server capability so that the client could
feed information back to the server, for example, to do database lookups
on the server, to add new information to the server, or to place an order
(which required more security than the original systems offered). These
are the changes we’'ve been seeing in the development of the Web. Feedback

The Web browser was a big step forward: the concept that one piece of
information could be displayed on any type of computer without change.
However, browsers were still rather primitive and rapidly bogged down by
the demands placed on them. They weren’t particularly interactive, and
tended to clog up both the server and the Internet because any time you
needed to do something that required programming you had to send
information back to the server to be processed. It could take many
seconds or minutes to find out you had misspelled something in your
request. Since the browser was just a viewer it couldn’t perform even the
simplest computing tasks. (On the other hand, it was safe, since it couldn’t
execute any programs on your local machine that might contain bugs or
viruses.) Feedback

To solve this problem, different approaches have been taken. To begin
with, graphics standards have been enhanced to allow better animation
and video within browsers. The remainder of the problem can be solved
only by incorporating the ability to run programs on the client end, under
the browser. This is called client-side programming. Feedback

Client-side programming

The Web’s initial server-browser design provided for interactive content,
but the interactivity was completely provided by the server. The server
produced static pages for the client browser, which would simply interpret
and display them. Basic HTML contains simple mechanisms for data
gathering: text-entry boxes, check boxes, radio boxes, lists and drop-down
lists, as well as a button that can only be programmed to reset the data on
the form or “submit” the data on the form back to the server. This
submission passes through the Common Gateway Interface (CGI)
provided on all Web servers. The text within the submission tells CGI
what to do with it. The most common action is to run a program located
on the server in a directory that’s typically called “cgi-bin.” (If you watch
the address window at the top of your browser when you push a button on

70

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_222
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_223
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_224

a Web page, you can sometimes see “cgi-bin” within all the gobbledygook
there.) These programs can be written in most languages. Perl has been a
common choice because it is designed for text manipulation and is
interpreted, so it can be installed on any server regardless of processor or
operating system. However, Python (my favorite; see www.Python.org)

has been making inroads because of its greater power and simplicity.
Feedback

Many powerful Web sites today are built strictly on CGI, and you can in
fact do nearly anything with CGI. However, Web sites built on CGI
programs can rapidly become overly complicated to maintain, and there is
also the problem of response time. The response of a CGI program
depends on how much data must be sent, as well as the load on both the
server and the Internet. (On top of this, starting a CGI program tends to
be slow.) The initial designers of the Web did not foresee how rapidly this
bandwidth would be exhausted for the kinds of applications people
developed. For example, any sort of dynamic graphing is nearly
impossible to perform with consistency because a GIF file must be created
and moved from the server to the client for each version of the graph. And
you’ve no doubt had direct experience with something as simple as
validating the data on an input form. You press the submit button on a
page; the data is shipped back to the server; the server starts a CGI
program that discovers an error, formats an HTML page informing you of
the error, and then sends the page back to you; you must then back up a
page and try again. Not only is this slow, it’s inelegant. Feedback

The solution is client-side programming. Most machines that run Web
browsers are powerful engines capable of doing vast work, and with the
original static HTML approach they are sitting there, just idly waiting for
the server to dish up the next page. Client-side programming means that
the Web browser is harnessed to do whatever work it can, and the result
for the user is a much speedier and more interactive experience at your
Web site. Feedback

The problem with discussions of client-side programming is that they
aren’t very different from discussions of programming in general. The
parameters are almost the same, but the platform is different: a Web
browser is like a limited operating system. In the end, you must still
program, and this accounts for the dizzying array of problems and

Chapter 1: Introduction to Objects 71

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_225
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_226
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_227

solutions produced by client-side programming. The rest of this section
provides an overview of the issues and approaches in client-side
programming. Feedback

Plug-ins

One of the most significant steps forward in client-side programming is
the development of the plug-in. This is a way for a programmer to add
new functionality to the browser by downloading a piece of code that
plugs itself into the appropriate spot in the browser. It tells the browser
“from now on you can perform this new activity.” (You need to download
the plug-in only once.) Some fast and powerful behavior is added to
browsers via plug-ins, but writing a plug-in is not a trivial task, and isn’t
something you’d want to do as part of the process of building a particular
site. The value of the plug-in for client-side programming is that it allows
an expert programmer to develop a new language and add that language
to a browser without the permission of the browser manufacturer. Thus,
plug-ins provide a “back door” that allows the creation of new client-side
programming languages (although not all languages are implemented as
plug-ins). Feedback

Scripting languages

Plug-ins resulted in an explosion of scripting languages. With a scripting
language you embed the source code for your client-side program directly
into the HTML page, and the plug-in that interprets that language is
automatically activated while the HTML page is being displayed. Scripting
languages tend to be reasonably easy to understand and, because they are
simply text that is part of an HTML page, they load very quickly as part of
the single server hit required to procure that page. The trade-off is that
your code is exposed for everyone to see (and steal). Generally, however,
you aren’t doing amazingly sophisticated things with scripting languages
so this is not too much of a hardship. Feedback

This points out that the scripting languages used inside Web browsers are
really intended to solve specific types of problems, primarily the creation
of richer and more interactive graphical user interfaces (GUIs). However,
a scripting language might solve 80 percent of the problems encountered
in client-side programming. Your problems might very well fit completely
within that 80 percent, and since scripting languages can allow easier and

72

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_228
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_229
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_230

faster development, you should probably consider a scripting language
before looking at a more involved solution such as Java or ActiveX
programming. Feedback

The most commonly discussed browser scripting languages are JavaScript
(which has nothing to do with Java; it’s named that way just to grab some
of Java’s marketing momentum), VBScript (which looks like Visual
Basic), and Tcl/Tk, which comes from the popular cross-platform GUI-
building language. There are others out there, and no doubt more in
development. Feedback

JavaScript is probably the most commonly supported. It comes built into
both Netscape Navigator and the Microsoft Internet Explorer (IE)—
unfortunately, the flavor of JavaScript on the two browsers can vary
widely (the Mozilla browser, freely downloadable from www.Mozilla.org,
supports the ECMAScript standard, which may one day become
universally supported). In addition, there are probably more JavaScript
books available than there are for the other browser languages, and some
tools automatically create pages using JavaScript. However, if you're
already fluent in Visual Basic or Tcl/Tk, you’ll be more productive using
those scripting languages rather than learning a new one. (You'll have
your hands full dealing with the Web issues already.) Feedback

Java

If a scripting language can solve 80 percent of the client-side
programming problems, what about the other 20 percent—the “really
hard stuff?” Java is a popular solution for this. Not only is it a powerful
programming language built to be secure, cross-platform, and
international, but Java is being continually extended to provide language
features and libraries that elegantly handle problems that are difficult in
traditional programming languages, such as multithreading, database
access, network programming, and distributed computing. Java allows
client-side programming via the applet and with Java web start. Feedback

An applet is a mini-program that will run only under a Web browser. The
applet is downloaded automatically as part of a Web page (just as, for
example, a graphic is automatically downloaded). When the applet is
activated it executes a program. This is part of its beauty—it provides you
with a way to automatically distribute the client software from the server

Chapter 1: Introduction to Objects 73

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_231
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_232
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_233
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_234

at the time the user needs the client software, and no sooner. The user
gets the latest version of the client software without fail and without
difficult reinstallation. Because of the way Java is designed, the
programmer needs to create only a single program, and that program
automatically works with all computers that have browsers with built-in
Java interpreters. (This safely includes the vast majority of machines.)
Since Java is a full-fledged programming language, you can do as much
work as possible on the client before and after making requests of the
server. For example, you won’t need to send a request form across the
Internet to discover that you’ve gotten a date or some other parameter
wrong, and your client computer can quickly do the work of plotting data
instead of waiting for the server to make a plot and ship a graphic image
back to you. Not only do you get the immediate win of speed and
responsiveness, but the general network traffic and load on servers can be
reduced, preventing the entire Internet from slowing down. Feedback

One advantage a Java applet has over a scripted program is that it’s in
compiled form, so the source code isn’t available to the client. On the
other hand, a Java applet can be decompiled without too much trouble,
but hiding your code is often not an important issue. Two other factors
can be important. As you will see later in this book, a compiled Java
applet can require extra time to download, if it is large. A scripted
program will just be integrated into the Web page as part of its text (and
will generally be smaller and reduce server hits). This could be important
to the responsiveness of your Web site. Another factor is the all-important
learning curve. Regardless of what you’ve heard, Java is not a trivial
language to learn. If you're a Visual Basic programmer, moving to
VBScript will be your fastest solution (assuming you can constrain your
customers to Windows platforms), and since it will probably solve most
typical client/server problems you might be hard pressed to justify
learning Java. If you're experienced with a scripting language you will
certainly benefit from looking at JavaScript or VBScript before
committing to Java, since they might fit your needs handily and you’ll be
more productive sooner, Feedback

.NET and C#

For awhile, the main competitor to Java applets was Microsoft’s ActiveX,
although it required that the client be running Windows. Since then,

74

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_235
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_236

Microsoft has produced a full competitor to Java in the form of the .NET
platform and the C# programming language. .NET is roughly the same as
the Java virtual machine and Java libraries, and C# bears unmistakeable
similarities to Java. This is certainly the best work that Microsoft has done
in the arena of programming languages and programming environments.
Of course, they had the considerable advantage of being able to see what
worked well and what didn’t work so well in Java, and building upon that,
but build they have. This is the first time since its inception that Java has
had any real competition, and if all goes well, the result will be that the
Java designers at Sun will take a hard look at C# and why programmers
might want to move to it, and respond by making fundamental
improvements to Java. Feedback

Currently, the main vulnerability and important question concerning
.NET is whether Microsoft will allow it to be completely ported to other
platforms. They claim there’s no problem doing this, and the Mono
project (www.go-mono.com) has a partial implementation of NET
working on Linux, but until the implementation is complete and
Microsoft has not decided to squash any part of it, NET as a cross-
platform solution is still a risky bet. Feedback

To learn more about .NET and C#, see Thinking in C# by Larry O’Brien
and Bruce Eckel, Prentice Hall 2003.

Security

Automatically downloading and running programs across the Internet can
sound like a virus-builder’s dream. If you click on a Web site, you might
automatically download any number of things along with the HTML page:
GIF files, script code, compiled Java code, and ActiveX components.
Some of these are benign; GIF files can’t do any harm, and scripting
languages are generally limited in what they can do. Java was also
designed to run its applets within a “sandbox” of safety, which prevents it
from writing to disk or accessing memory outside the sandbox. Feedback

Microsoft’s ActiveX is at the opposite end of the spectrum. Programming
with ActiveX is like programming Windows—you can do anything you
want. So if you click on a page that downloads an ActiveX component,
that component might cause damage to the files on your disk. Of course,
programs that you load onto your computer that are not restricted to

Chapter 1: Introduction to Objects 75

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_237
mailto:TIJ3@MindView.net?Subject=[TIJ3]A0441
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_238

running inside a Web browser can do the same thing. Viruses downloaded
from Bulletin-Board Systems (BBSs) have long been a problem, but the
speed of the Internet amplifies the difficulty. Feedback

The solution seems to be “digital signatures,” whereby code is verified to
show who the author is. This is based on the idea that a virus works
because its creator can be anonymous, so if you remove the anonymity
individuals will be forced to be responsible for their actions. This seems
like a good plan because it allows programs to be much more functional,
and I suspect it will eliminate malicious mischief. If, however, a program
has an unintentional destructive bug it will still cause problems. Feedback

The Java approach is to prevent these problems from occurring, via the
sandbox. The Java interpreter that lives on your local Web browser
examines the applet for any untoward instructions as the applet is being
loaded. In particular, the applet cannot write files to disk or erase files
(one of the mainstays of viruses). Applets are generally considered to be
safe, and since this is essential for reliable client/server systems, any bugs
in the Java language that allow viruses are rapidly repaired. (It’s worth
noting that the browser software actually enforces these security
restrictions, and some browsers allow you to select different security
levels to provide varying degrees of access to your system.) Feedback

You might be skeptical of this rather draconian restriction against writing
files to your local disk. For example, you may want to build a local
database or save data for later use offline. The initial vision seemed to be
that eventually everyone would get online to do anything important, but
that was soon seen to be impractical (although low-cost “Internet
appliances” might someday satisfy the needs of a significant segment of
users). The solution is the “signed applet” that uses public-key encryption
to verify that an applet does indeed come from where it claims it does. A
signed applet can still trash your disk, but the theory is that since you can
now hold the applet creator accountable they won’t do vicious things. Java
provides a framework for digital signatures so that you will eventually be
able to allow an applet to step outside the sandbox if necessary. Chapter
14 contains an example of how to sign an applet. Feedback

In addition, Java Web Start is a relatively new way to easily distribute
stand-alone programs that don’t need a web browser in which to run. This

76

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_239
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_240
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_241
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_242

technology has the potential of solving many client side problems
associated with running programs inside a browser. Web Start programs
can either be signed, or they can ask the client for permission every time
they are doing something potentially dangerous on the local system.

Chapter 14 has a simple example and explanation of Java Web Start.
Feedback

Digital signatures have missed an important issue, which is the speed that
people move around on the Internet. If you download a buggy program
and it does something untoward, how long will it be before you discover
the damage? It could be days or even weeks. By then, how will you track

down the program that’s done it? And what good will it do you at that
point? Feedback

Internet vs. intranet

The Web is the most general solution to the client/server problem, so it
makes sense to use the same technology to solve a subset of the problem,
in particular the classic client/server problem within a company. With
traditional client/server approaches you have the problem of multiple
types of client computers, as well as the difficulty of installing new client
software, both of which are handily solved with Web browsers and client-
side programming. When Web technology is used for an information
network that is restricted to a particular companyi, it is referred to as an
intranet. Intranets provide much greater security than the Internet, since
you can physically control access to the servers within your company. In
terms of training, it seems that once people understand the general
concept of a browser it’s much easier for them to deal with differences in
the way pages and applets look, so the learning curve for new kinds of
systems seems to be reduced. Feedback

The security problem brings us to one of the divisions that seems to be
automatically forming in the world of client-side programming. If your
program is running on the Internet, you don’t know what platform it will
be working under, and you want to be extra careful that you don’t
disseminate buggy code. You need something cross-platform and secure,
like a scripting language or Java. Feedback

If you're running on an intranet, you might have a different set of
constraints. It’s not uncommon that your machines could all be

Chapter 1: Introduction to Objects 77

mailto:TIJ3@MindView.net?Subject=[TIJ3]A0442
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_243
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_244
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_245

Intel/Windows platforms. On an intranet, you're responsible for the
quality of your own code and can repair bugs when they’re discovered. In
addition, you might already have a body of legacy code that you've been
using in a more traditional client/server approach, whereby you must
physically install client programs every time you do an upgrade. The time
wasted in installing upgrades is the most compelling reason to move to
browsers, because upgrades are invisible and automatic (Java Web Start
is also a solution to this problem). If you are involved in such an intranet,
the most sensible approach to take is the shortest path that allows you to
use your existing code base, rather than trying to recode your programs in
a new language. Feedback

When faced with this bewildering array of solutions to the client-side
programming problem, the best plan of attack is a cost-benefit analysis.
Consider the constraints of your problem and what would be the shortest
path to your solution. Since client-side programming is still
programming, it’s always a good idea to take the fastest development
approach for your particular situation. This is an aggressive stance to
prepare for inevitable encounters with the problems of program
development. Feedback

Server-side programming

This whole discussion has ignored the issue of server-side programming.
What happens when you make a request of a server? Most of the time the
request is simply “send me this file.” Your browser then interprets the file
in some appropriate fashion: as an HTML page, a graphic image, a Java
applet, a script program, etc. A more complicated request to a server
generally involves a database transaction. A common scenario involves a
request for a complex database search, which the server then formats into
an HTML page and sends to you as the result. (Of course, if the client has
more intelligence via Java or a scripting language, the raw data can be
sent and formatted at the client end, which will be faster and less load on
the server.) Or you might want to register your name in a database when
you join a group or place an order, which will involve changes to that
database. These database requests must be processed via some code on
the server side, which is generally referred to as server-side programming.
Traditionally, server-side programming has been performed using Perl,
Python, C++, or some other language, to create CGI programs, but more

78

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_246
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_247

sophisticated systems have been appearing. These include Java-based
Web servers that allow you to perform all your server-side programming
in Java by writing what are called servlets. Servlets and their offspring,
JSPs, are two of the most compelling reasons that companies who develop
Web sites are moving to Java, especially because they eliminate the
problems of dealing with differently abled browsers (these topics are
covered in Thinking in Enterprise Java). Feedback

Applications

Much of the brouhaha over Java has been over applets. Java is actually a
general-purpose programming language that can solve any type of
problem—at least in theory. And as pointed out previously, there might be
more effective ways to solve most client/server problems. When you move
out of the applet arena (and simultaneously release the restrictions, such
as the one against writing to disk) you enter the world of general-purpose
applications that run standalone, without a Web browser, just like any
ordinary program does. Here, Java’s strength is not only in its portability,
but also its programmability. As you’ll see throughout this book, Java has
many features that allow you to create robust programs in a shorter
period than with previous programming languages. Feedback

Be aware that this is a mixed blessing. You pay for the improvements
through slower execution speed (although there is significant work going
on in this area—in particular, the so-called “hotspot” performance
improvements in recent versions of Java). Like any language, Java has
built-in limitations that might make it inappropriate to solve certain types
of programming problems. Java is a rapidly evolving language, however,
and as each new release comes out it becomes more and more attractive
for solving larger sets of problems. Feedback

Why Java succeeds

The reason Java has been so successful is that the goal was to solve many
of the problems facing developers today. A fundamental goal of Java is
improved productivity. This productivity comes in many ways, but the
language is designed to be a significant improvement over its

Chapter 1: Introduction to Objects 79

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_248
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_249
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_250

predecessors, and to provide important benefits to the programmer.
Feedback

Systems are easier
to express and understand

Classes designed to fit the problem tend to express it better. This means
that when you write the code, you're describing your solution in the terms
of the problem space (“Put the grommet in the bin”) rather than the terms
of the computer, which is the solution space (“Set the bit in the chip that
means that the relay will close”). You deal with higher-level concepts and
can do much more with a single line of code. Feedback

The other benefit of this ease of expression is maintenance, which (if
reports can be believed) is a huge portion of the cost over a program’s
lifetime. If a program is easier to understand, then it’s easier to maintain.
This can also reduce the cost of creating and maintaining the
documentation. Feedback

Maximal leverage with libraries

The fastest way to create a program is to use code that’s already written: a
library. A major goal in Java is to make library use easier. This is
accomplished by casting libraries into new data types (classes), so that
bringing in a library means adding new types to the language. Because the
Java compiler takes care of how the library is used—guaranteeing proper
initialization and cleanup, and ensuring that methods are called
properly—you can focus on what you want the library to do, not how you
have to do it. Feedback

Error handling

Error handling in C is a notorious problem, and one that is often
ignored—finger-crossing is usually involved. If you’re building a large,
complex program, there’s nothing worse than having an error buried
somewhere with no clue as to where it came from. Java exception
handling is a way to guarantee that an error is noticed, and that
something happens as a result. Feedback

8o

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_327
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_328
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_329
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_330
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_331

Programming in the large

Many traditional languages have built-in limitations to program size and
complexity. BASIC, for example, can be great for pulling together quick
solutions for certain classes of problems, but if the program gets more
than a few pages long, or ventures out of the normal problem domain of
that language, it’s like trying to swim through an ever-more viscous fluid.
There’s no clear line that tells you when your language is failing you, and
even if there were, you'd ignore it. You don’t say, “My BASIC program just
got too big; I'll have to rewrite it in C!” Instead, you try to shoehorn a few
more lines in to add that one new feature. So the extra costs come
creeping up on you. Feedback

Java is designed to aid programming in the large—that is, to erase those
creeping-complexity boundaries between a small program and a large
one. You certainly don’t need to use OOP when you're writing a “hello
world” style utility program, but the features are there when you need
them. And the compiler is aggressive about ferreting out bug-producing
errors for small and large programs alike. Feedback

Java vs. C++7?

Java looks a lot like C++, and so naturally it would seem that C++ will be
replaced by Java. But I'm starting to question this logic. For one thing,
C++ still has some features that Java doesn’t, and although there have
been a lot of promises about Java someday being as fast or faster than
C++, we've seen steady improvements but no dramatic breakthroughs.
Also, there seems to be a continuing interest in C++, so I don’t think that

language 1s going away any time soon. Languages seem to hang around.
Feedback

I'm beginning to think that the strength of Java lies in a slightly different
arena than that of C++. C++ is a language that doesn’t try to fit a mold.
Certainly it has been adapted in a number of ways to solve particular
problems. Some C++ tools combine libraries, component models, and
code-generation tools to solve the problem of developing windowed end-
user applications (for Microsoft Windows). And yet, what do the vast
majority of Windows developers use? Microsoft’s Visual Basic (VB). This

Chapter 1: Introduction to Objects 81

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_332
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_333
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_346

despite the fact that VB produces the kind of code that becomes
unmanageable when the program is only a few pages long (and syntax
that can be positively mystifying). As successful and popular as VB is, it’s
not a very good example of language design. It would be nice to have the
ease and power of VB without the resulting unmanageable code. And
that’s where I think Java will shine: as the “next VB8.” You may or may
not shudder to hear this, but think about it: so much of Java is intended to
make it easy for the programmer to solve application-level problems like
networking and cross-platform UI, and yet it has a language design that
allows the creation of very large and flexible bodies of code. Add to this
the fact that Java’s type checking and error handling is a big improvement
over most languages and you have the makings of a significant leap
forward in programming productivity. Feedback

If you're developing all your code primarily from scratch, then the
simplicity of Java over C++ will significantly shorten your development
time—the anecdotal evidence (stories from C++ teams that I've talked to
who have switched to Java) suggests a doubling of development speed
over C++. If Java performance doesn’t matter or you can somehow
compensate for it, sheer time-to-market issues make it difficult to choose
C++ over Java. Feedback

The biggest issue is performance. Interpreted Java has been slow, even 20
to 50 times slower than C in the original Java interpreters. This has
improved greatly over time (especially with more recent versions of Java),
but it will still remain an important number. Computers are about speed;
if it wasn’t significantly faster to do something on a computer then you’d
do it by hand. (I've even heard it suggested that you start with Java, to
gain the short development time, then use a tool and support libraries to
translate your code to C++, if you need faster execution speed.) Feedback

The key to making Java feasible for many development projects is the
appearance of speed improvements like so-called “just-in time” (JIT)
compilers, Sun’s own “hotspot” technology, and even native code

8 Microsoft is effectively saying “not so fast” with C# and .NET. Numerous people have
raised the question of whether VB programmers want to change to anything else, whether
that be Java, C#, or even VB.NET.

82

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_347
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_349
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_350

compilers. Of course, native code compilers will eliminate the touted
cross-platform execution of the compiled programs, but they will also
bring the speed of the executable closer to that of C and C++. And cross-
compiling a program in Java should be a lot easier than doing so in C or
C++. (In theory, you just recompile, but that promise has been made
before for other languages.) Feedback

Summary

This chapter attempts to give you a feel for the broad issues of object-
oriented programming and Java, including why OOP is different, and why
Java in particular is different. Feedback

OOP and Java may not be for everyone. It’s important to evaluate your
own needs and decide whether Java will optimally satisfy those needs, or
if you might be better off with another programming system (including
the one you're currently using). If you know that your needs will be very
specialized for the foreseeable future and if you have specific constraints
that may not be satisfied by Java, then you owe it to yourself to investigate
the alternatives (In particular, I recommend looking at Python; see
www.Python.org). Even if you eventually choose Java as your language,
you’ll at least understand what the options were and have a clear vision of
why you took that direction. Feedback

You know what a procedural program looks like: data definitions and
function calls. To find the meaning of such a program you have to work a
little, looking through the function calls and low-level concepts to create a
model in your mind. This is the reason we need intermediate
representations when designing procedural programs—by themselves,
these programs tend to be confusing because the terms of expression are

oriented more toward the computer than to the problem you're solving.
Feedback

Because Java adds many new concepts on top of what you find in a
procedural language, your natural assumption may be that the main() in
a Java program will be far more complicated than for the equivalent C
program. Here, you’'ll be pleasantly surprised: A well-written Java
program is generally far simpler and much easier to understand than the
equivalent C program. What you’ll see are the definitions of the objects

Chapter 1: Introduction to Objects 83

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_351
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_353
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_354
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_355

that represent concepts in your problem space (rather than the issues of
the computer representation) and messages sent to those objects to
represent the activities in that space. One of the delights of object-
oriented programming is that, with a well-designed program, it’s easy to
understand the code by reading it. Usually there’s a lot less code as well,

because many of your problems will be solved by reusing existing library
code. Feedback

84

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap01_356

2: Everything
is an Object

Although it is based on C++, Java is more of a “pure”
object-oriented language.

Both C++ and Java are hybrid languages, but in Java the designers felt
that the hybridization was not as important as it was in C++. A hybrid
language allows multiple programming styles; the reason C++ is hybrid is
to support backward compatibility with the C language. Because C++ is a
superset of the C language, it includes many of that language’s
undesirable features, which can make some aspects of C++ overly
complicated. Feedback

The Java language assumes that you want to do only object-oriented
programming. This means that before you can begin you must shift your
mindset into an object-oriented world (unless it’s already there). The
benefit of this initial effort is the ability to program in a language that is
simpler to learn and to use than many other OOP languages. In this
chapter we’ll see the basic components of a Java program and we’ll learn
that everything in Java is an object, even a Java program. Feedback

You manipulate objects
with references

Each programming language has its own means of manipulating data.
Sometimes the programmer must be constantly aware of what type of
manipulation is going on. Are you manipulating the object directly, or are
you dealing with some kind of indirect representation (a pointer in C or
C++) that must be treated with a special syntax? Feedback

85

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_357
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_358
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_359

All this is simplified in Java. You treat everything as an object, using a
single consistent syntax. Although you treat everything as an object, the
identifier you manipulate is actually a “reference” to an object’. You might
imagine this scene as a television (the object) with your remote control
(the reference). As long as you’re holding this reference, you have a
connection to the television, but when someone says “change the channel”
or “lower the volume,” what you're manipulating is the reference, which in
turn modifies the object. If you want to move around the room and still
control the television, you take the remote/reference with you, not the
television. Feedback

Also, the remote control can stand on its own, with no television. That is,
just because you have a reference doesn’t mean there’s necessarily an
object connected to it. So if you want to hold a word or sentence, you
create a String reference: Feedback

String s;

But here you've created only the reference, not an object. If you decided to
send a message to s at this point, you’ll get an error (at run time) because
s isn’t actually attached to anything (there’s no television). A safer
practice, then, is always to initialize a reference when you create it: Feedback

String s = "asdf";

1This can be a flashpoint. There are those who say “clearly, it’s a pointer,” but this
presumes an underlying implementation. Also, Java references are much more akin to
C++ references than pointers in their syntax. In the first edition of this book, I chose to
invent a new term, “handle,” because C++ references and Java references have some
important differences. I was coming out of C++ and did not want to confuse the C++
programmers whom I assumed would be the largest audience for Java. In the 214 edition, I
decided that “reference” was the more commonly used term, and that anyone changing
from C++ would have a lot more to cope with than the terminology of references, so they
might as well jump in with both feet. However, there are people who disagree even with
the term “reference.” I read in one book where it was “completely wrong to say that Java
supports pass by reference,” because Java object identifiers (according to that author) are
actually “object references.” And (he goes on) everything is actually pass by value. So
you’re not passing by reference, you're “passing an object reference by value.” One could
argue for the precision of such convoluted explanations, but I think my approach
simplifies the understanding of the concept without hurting anything (well, the language
lawyers may claim that I'm lying to you, but I'll say that I'm providing an appropriate
abstraction.)

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_360
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_361
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_362

However, this uses a special Java feature: strings can be initialized with
quoted text. Normally, you must use a more general type of initialization
for objects. Feedback

You must create
all the objects

When you create a reference, you want to connect it with a new object.
You do so, in general, with the new keyword. new says, “Make me a new
one of these objects.” So in the above example, you can say: Feedback

String s = new String("asdf");

Not only does this mean “Make me a new String,” but it also gives
information about how to make the String by supplying an initial
character string. Feedback

Of course, String is not the only type that exists. Java comes with a
plethora of ready-made types. What’s more important is that you can
create your own types. In fact, that’s the fundamental activity in Java
programming, and it’s what you’ll be learning about in the rest of this
bOOk. Feedback

Where storage lives

It’s useful to visualize some aspects of how things are laid out while the
program is running, in particular how memory is arranged. There are six
different places to store data: Feedback

1. Registers. This is the fastest storage because it exists in a place
different from that of other storage: inside the processor. However,
the number of registers is severely limited, so registers are
allocated by the compiler according to its needs. You don’t have
direct control, nor do you see any evidence in your programs that
registers even exist. Feedback

2. The stack. This lives in the general RAM (random-access
memory) area, but has direct support from the processor via its
stack pointer. The stack pointer is moved down to create new

Chapter 2: Everything is an Object 87

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_363
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_364
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_365
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_366
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_367
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_368

memory and moved up to release that memory. This is an
extremely fast and efficient way to allocate storage, second only to
registers. The Java compiler must know, while it is creating the
program, the exact size and lifetime of all the data that is stored on
the stack, because it must generate the code to move the stack
pointer up and down. This constraint places limits on the flexibility
of your programs, so while some Java storage exists on the stack—
in particular, object references—Java objects themselves are not
placed on the stack. Feedback

The heap. This is a general-purpose pool of memory (also in the
RAM area) where all Java objects live. The nice thing about the
heap is that, unlike the stack, the compiler doesn’t need to know
how much storage it needs to allocate from the heap or how long
that storage must stay on the heap. Thus, there’s a great deal of
flexibility in using storage on the heap. Whenever you need to
create an object, you simply write the code to create it using new,
and the storage is allocated on the heap when that code is executed.
Of course there’s a price you pay for this flexibility: it takes more
time to allocate heap storage than it does to allocate stack storage
(if you even could create objects on the stack in Java, as you can in
C++). Eeedback

Static storage. “Static” is used here in the sense of “in a fixed
location” (although it’s also in RAM). Static storage contains data
that is available for the entire time a program is running. You can
use the static keyword to specify that a particular element of an
object is static, but Java objects themselves are never placed in
static storage. Feedback

Constant storage. Constant values are often placed directly in
the program code, which is safe since they can never change.
Sometimes constants are cordoned off by themselves so that they
can be optionally placed in read-only memory (ROM), in
embedded systems. Feedback

Non-RAM storage. If data lives completely outside a program it
can exist while the program is not running, outside the control of
the program. The two primary examples of this are streamed

88

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_369
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_370
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_371
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_372

objects, in which objects are turned into streams of bytes, generally
to be sent to another machine, and persistent objects, in which the
objects are placed on disk so they will hold their state even when
the program is terminated. The trick with these types of storage is
turning the objects into something that can exist on the other
medium, and yet can be resurrected into a regular RAM-based
object when necessary. Java provides support for lightweight
persistence, and future versions of Java might provide more
complete solutions for persistence. Feedback

Special case: primitive types

One group of types, which you’ll use quite often in your programming,
gets special treatment. You can think of these as “primitive” types. The
reason for the special treatment is that to create an object with new—
especially a small, simple variable—isn’t very efficient because new places
objects on the heap. For these types Java falls back on the approach taken
by C and C++. That is, instead of creating the variable using new, an
“automatic” variable is created that is not a reference. The variable holds
the value, and it’s placed on the stack so it’s much more efficient. Feedback

Java determines the size of each primitive type. These sizes don’t change
from one machine architecture to another as they do in most languages.
This size invariance is one reason Java programs are portable. Feedback

Primitive | Size Minimum | Maximum Wrapper
type type
boolean — — — Boolean
char 16-bit | Unicode o Unicode 21%-1 | Character
byte 8-bit -128 +127 Byte
short 16-bit | -215 +215—1 Short

int 32-bit | -23 +231—1 Integer
long 64-bit | -203 +263—1 Long
float 32-bit | IEEE754 IEEE754 Float
double 64-bit | IEEE754 IEEE754 Double
void — — — Void

Chapter 2: Everything is an Object 89

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_373
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_374
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_375

All numeric types are signed, so don’t look for unsigned types. Feedback

The size of the boolean type is not explicitly specified; it is only defined
to be able to take the literal values true or false. Feedback

The “wrapper” classes for the primitive data types allow you to make a
nonprimitive object on the heap to represent that primitive type. For
example: Feedback

char ¢ = '"x';
Character C = new Character(c);

Or you could also use:
Character C = new Character('x');

The reasons for doing this will be shown in a later chapter. Feedback

High-precision numbers

Java includes two classes for performing high-precision arithmetic:
BigInteger and BigDecimal. Although these approximately fit into the
same category as the “wrapper” classes, neither one has a primitive
analogue. Feedback

Both classes have methods that provide analogues for the operations that
you perform on primitive types. That is, you can do anything with a
BigInteger or BigDecimal that you can with an int or float, it’s just
that you must use method calls instead of operators. Also, since there’s
more involved, the operations will be slower. You're exchanging speed for
accuracy. Feedback

BigInteger supports arbitrary-precision integers. This means that you
can accurately represent integral values of any size without losing any
information during operations. Feedback

BigDecimal is for arbitrary-precision fixed-point numbers; you can use
these for accurate monetary calculations, for example. Feedback

Consult the JDK documentation for details about the constructors and
methods you can call for these two classes. Feedback

90

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_376
mailto:TIJ3@MindView.net?Subject=[TIJ3]A0107
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_377
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_378
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_379
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_380
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_381
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_382
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_383

Arrays in Java

Virtually all programming languages support arrays. Using arrays in C
and C++ is perilous because those arrays are only blocks of memory. If a
program accesses the array outside of its memory block or uses the
memory before initialization (common programming errors) there will be
unpredictable results. Feedback

One of the primary goals of Java is safety, so many of the problems that
plague programmers in C and C++ are not repeated in Java. A Java array
is guaranteed to be initialized and cannot be accessed outside of its range.
The range checking comes at the price of having a small amount of
memory overhead on each array as well as verifying the index at run time,
but the assumption is that the safety and increased productivity is worth
the expense. Feedback

When you create an array of objects, you are really creating an array of
references, and each of those references is automatically initialized to a
special value with its own keyword: null. When Java sees null, it
recognizes that the reference in question isn’t pointing to an object. You
must assign an object to each reference before you use it, and if you try to
use a reference that’s still null, the problem will be reported at run time.
Thus, typical array errors are prevented in Java. Feedback

You can also create an array of primitives. Again, the compiler guarantees
initialization because it zeroes the memory for that array. Feedback

Arrays will be covered in detail in later chapters. Feedback

You never need to
destroy an object

In most programming languages, the concept of the lifetime of a variable
occupies a significant portion of the programming effort. How long does
the variable last? If you are supposed to destroy it, when should you?
Confusion over variable lifetimes can lead to a lot of bugs, and this section
shows how Java greatly simplifies the issue by doing all the cleanup work
for you. Feedback

Chapter 2: Everything is an Object 91

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_384
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_385
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_386
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_387
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_388
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_389

Scoping

Most procedural languages have the concept of scope. This determines
both the visibility and lifetime of the names defined within that scope. In
C, C++, and Java, scope is determined by the placement of curly braces
{}. So for example: Feedback

{
int x = 12;
/1 Only x avail abl e
{
int g = 96;
/1 Both x & q avail able
}

/1 Only x avail abl e
/1 q “out of scope”

}

A variable defined within a scope is available only to the end of that scope.
Feedback

Any text after a °//’ to the end of a line is a comment.

Indentation makes Java code easier to read. Since Java is a free-form
language, the extra spaces, tabs, and carriage returns do not affect the
resulting program. Feedback

Note that you cannot do the following, even though it is legal in C and
C++:

int x = 12;

int x =96; // Illegal
}
}

The compiler will announce that the variable x has already been defined.
Thus the C and C++ ability to “hide” a variable in a larger scope is not
allowed because the Java designers thought that it led to confusing
programes. Feedback

92

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_390
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_391
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_392
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_393

Scope of objects

Java objects do not have the same lifetimes as primitives. When you
create a Java object using new, it hangs around past the end of the scope.
Thus if you use:

{
String s = new String("a string");
} // End of scope

the reference s vanishes at the end of the scope. However, the String
object that s was pointing to is still occupying memory. In this bit of code,
there is no way to access the object because the only reference to it is out
of scope. In later chapters you’ll see how the reference to the object can be
passed around and duplicated during the course of a program. Feedback

It turns out that because objects created with new stay around for as long
as you want them, a whole slew of C++ programming problems simply
vanish in Java. The hardest problems seem to occur in C++ because you
don’t get any help from the language in making sure that the objects are
available when they’re needed. And more important, in C++ you must

make sure that you destroy the objects when you're done with them.
Feedback

That brings up an interesting question. If Java leaves the objects lying
around, what keeps them from filling up memory and halting your
program? This is exactly the kind of problem that would occur in C++.
This is where a bit of magic happens. Java has a garbage collector, which
looks at all the objects that were created with new and figures out which
ones are not being referenced anymore. Then it releases the memory for
those objects, so the memory can be used for new objects. This means that
you never need to worry about reclaiming memory yourself. You simply
create objects, and when you no longer need them they will go away by
themselves. This eliminates a certain class of programming problem: the
so-called “memory leak,” in which a programmer forgets to release
memory. Feedback

Chapter 2: Everything is an Object 93

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_394
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_395
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_396

Creating new

data types: class

If everything is an object, what determines how a particular class of object
looks and behaves? Put another way, what establishes the type of an
object? You might expect there to be a keyword called “type,” and that
certainly would have made sense. Historically, however, most object-
oriented languages have used the keyword class to mean “I'm about to
tell you what a new type of object looks like.” The class keyword (which is
so common that it will not be emboldened throughout this book) is
followed by the name of the new type. For example: Feedback

cl ass ATypeNane { /* O ass body goes here */ }

This introduces a new type, although the class body consists only of a
comment (the stars and slashes and what is inside, which will be
discussed later in this chapter), so there is not too much that you can do
with it. However, you can create an object of this type using new:

ATypeNarme a = new ATypeNare();

But you cannot tell it to do much of anything (that is, you cannot send it
any interesting messages) until you define some methods for it. Feedback

Fields and methods

When you define a class (and all you do in Java is define classes, make
objects of those classes, and send messages to those objects), you can put
two types of elements in your class: fields (sometimes called data
members), and methods (sometimes called member functions). A field is
an object of any type that you can communicate with via its reference. It
can also be one of the primitive types (which isn’t a reference). If it is a
reference to an object, you must initialize that reference to connect it to an
actual object (using new, as seen earlier) in a special method called a
constructor (described fully in Chapter 4). If it is a primitive type you can
initialize it directly at the point of definition in the class. (As you’ll see
later, references can also be initialized at the point of definition.) Feedback

94

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_397
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_398
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_399

Each object keeps its own storage for its fields; the fields are not shared
among objects. Here is an example of a class with some fields: Feedback

class DataOnly {
int i;
float f;
bool ean b;

}

This class doesn’t do anything, but you can create an object: Feedback

| DataOnly d = new DataOnl y();

You can assign values to the fields, but you must first know how to refer to
a member of an object. This is accomplished by stating the name of the
object reference, followed by a period (dot), followed by the name of the
member inside the object: Feedback

| obj ect Ref er ence. nenber
For example: Feedback

47;
1.1f; // *f’ after number indicates float constant
fal se;

o O O

i
f
.b
It is also possible that your object might contain other objects that contain

data you’d like to modify. For this, you just keep “connecting the dots.”
For example: Feedback

| nyPl ane. | eft Tank. capacity = 100;

The DataOnly class cannot do much of anything except hold data,
because it has no methods. To understand how those work, you must first
understand arguments and return values, which will be described
ShOI'tly. Feedback

Default values for primitive members

When a primitive data type is a member of a class, it is guaranteed to get a
default value if you do not initialize it:

Primitive type | Default

boolean false

Chapter 2: Everything is an Object 95

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_400
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_401
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_402
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_403
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_404
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_405

Primitive type | Default

char ‘\uoooo’ (null)
byte (byte)o

short (short)o

int o

long oL

float o.of

double o.od

Note carefully that the default values are what Java guarantees when the
variable is used as a member of a class. This ensures that member
variables of primitive types will always be initialized (something C++
doesn’t do), reducing a source of bugs. However, this initial value may not
be correct or even legal for the program you are writing. It’s best to always
explicitly initialize your variables. Feedback

This guarantee doesn’t apply to “local” variables—those that are not fields
of a class. Thus, if within a method definition you have:

int x;

Then x will get some arbitrary value (as in C and C++); it will not
automatically be initialized to zero. You are responsible for assigning an
appropriate value before you use x. If you forget, Java definitely improves
on C++: you get a compile-time error telling you the variable might not
have been initialized. (Many C++ compilers will warn you about
uninitialized variables, but in Java these are errors.) Feedback

Methods, arguments,

and return values

In many languages (like C and C++), the term function is used to describe
a named subroutine. The term that is more commonly used in Java is
method, as in “a way to do something.” If you want, you can continue
thinking in terms of functions. It’s really only a syntactic difference, but
this book follows the common Java usage of the term “method.” Feedback

96

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_406
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_407
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_408

Methods in Java determine the messages an object can receive. In this
section you will learn how simple it is to define a method. Feedback

The fundamental parts of a method are the name, the arguments, the
return type, and the body. Here is the basic form:

returnType met hodName(/* Argunent list */) {
/* Method body */

}

The return type is the type of the value that pops out of the method after
you call it. The argument list gives the types and names for the
information you want to pass into the method. The method name and
argument list together uniquely identify the method. Feedback

Methods in Java can be created only as part of a class. A method can be
called only for an object2, and that object must be able to perform that
method call. If you try to call the wrong method for an object, you’ll get an
error message at compile time. You call a method for an object by naming
the object followed by a period (dot), followed by the name of the method
and its argument list, like this:

| obj ect Nane. mret hodNane(argl, arg2, arg3);

For example, suppose you have a method f() that takes no arguments
and returns a value of type int. Then, if you have an object called a for
which f() can be called, you can say this:

| int x =a.f();
The type of the return value must be compatible with the type of x. Feedback

This act of calling a method is commonly referred to as sending a
message to an object. In the above example, the message is f() and the
object is a. Object-oriented programming is often summarized as simply
“sending messages to objects.” Feedback

2 static methods, which you’ll learn about soon, can be called for the class, without an
object.

Chapter 2: Everything is an Object 97

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_409
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_410
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_411
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_412

The argument list

The method argument list specifies what information you pass into the
method. As you might guess, this information—like everything else in
Java—takes the form of objects. So, what you must specify in the
argument list are the types of the objects to pass in and the name to use
for each one. As in any situation in Java where you seem to be handing
objects around, you are actually passing references3. The type of the
reference must be correct, however. If the argument is supposed to be a

String, you must pass in a String or the compiler will give an error.
Feedback

Consider a method that takes a String as its argument. Here is the
definition, which must be placed within a class definition for it to be
compiled:

int storage(String s) {
return s.length() * 2;

}

This method tells you how many bytes are required to hold the
information in a particular String. (Each char in a String is 16 bits, or
two bytes, long, to support Unicode characters.) The argument is of type
String and is called s. Once s is passed into the method, you can treat it
just like any other object. (You can send messages to it.) Here, the
length() method is called, which is one of the methods for Strings; it
returns the number of characters in a string. Feedback

You can also see the use of the return keyword, which does two things.
First, it means “leave the method, I'm done.” Second, if the method
produces a value, that value is placed right after the return statement. In
this case, the return value is produced by evaluating the expression
s.length() * 2, Feedback

3 With the usual exception of the aforementioned “special” data types boolean, char,
byte, short, int, long, float, and double. In general, though, you pass objects, which
really means you pass references to objects.

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_413
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_414
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_415

You can return any type you want, but if you don’t want to return
anything at all, you do so by indicating that the method returns void.
Here are some examples:

bool ean flag() { return true; }

float natural LogBase() { return 2.718f; }
void nothing() { return; }

voi d not hi ng2() {}

When the return type is void, then the return keyword is used only to
exit the method, and is therefore unnecessary when you reach the end of
the method. You can return from a method at any point, but if you've
given a non-void return type then the compiler will force you (with error
messages) to return the appropriate type of value regardless of where you
return. Feedback

At this point, it can look like a program is just a bunch of objects with
methods that take other objects as arguments and send messages to those
other objects. That is indeed much of what goes on, but in the following
chapter you’ll learn how to do the detailed low-level work by making
decisions within a method. For this chapter, sending messages will
suffice. Feedback

Building a Java program

There are several other issues you must understand before seeing your
first Java program. Feedback

Name visibility

A problem in any programming language is the control of names. If you
use a name in one module of the program, and another programmer uses
the same name in another module, how do you distinguish one name
from another and prevent the two names from “clashing?” In C this is a
particular problem because a program is often an unmanageable sea of
names. C++ classes (on which Java classes are based) nest functions
within classes so they cannot clash with function names nested within
other classes. However, C++ still allows global data and global functions,
so clashing is still possible. To solve this problem, C++ introduced
namespaces using additional keywords. Feedback

Chapter 2: Everything is an Object 99

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_416
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_417
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_418
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_419

Java was able to avoid all of this by taking a fresh approach. To produce
an unambiguous name for a library, the specifier used is not unlike an
Internet domain name. In fact, the Java creators want you to use your
Internet domain name in reverse since those are guaranteed to be unique.
Since my domain name is BruceEckel.com, my utility library of foibles
would be named com.bruceeckel.utility.foibles. After your reversed
domain name, the dots are intended to represent subdirectories. Feedback

In Java 1.0 and Java 1.1 the domain extensions com, edu, org, net, etc.,
were capitalized by convention, so the library would appear:
COM.bruceeckel.utility.foibles. Partway through the development of
Java 2, however, it was discovered that this caused problems, and so now
the entire package name is lowercase. Feedback

This mechanism means that all of your files automatically live in their
own namespaces, and each class within a file must have a unique
identifier. So you do not need to learn special language features to solve
this problem—the language takes care of it for you. Feedback

Using other components

Whenever you want to use a predefined class in your program, the
compiler must know how to locate it. Of course, the class might already
exist in the same source code file that it’s being called from. In that case,
you simply use the class—even if the class doesn’t get defined until later in
the file (Java eliminates the “forward referencing” problem so you don’t
need to think about it). Feedback

What about a class that exists in some other file? You might think that the
compiler should be smart enough to simply go and find it, but there is a
problem. Imagine that you want to use a class with a particular name, but
more than one definition for that class exists (presumably these are
different definitions). Or worse, imagine that you’re writing a program,
and as you'’re building it you add a new class to your library that conflicts
with the name of an existing class. Feedback

To solve this problem, you must eliminate all potential ambiguities. This
is accomplished by telling the Java compiler exactly what classes you want
using the import keyword. import tells the compiler to bring in a
package, which is a library of classes. (In other languages, a library could

100 Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_420
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_421
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_422
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_423
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_424

consist of functions and data as well as classes, but remember that all
code in Java must be written inside a class.) Feedback

Most of the time you’ll be using components from the standard Java
libraries that come with your compiler. With these, you don’t need to
worry about long, reversed domain names; you just say, for example:

| i mport java.util.ArrayList;

to tell the compiler that you want to use Java’s ArrayList class. However,
util contains a number of classes and you might want to use several of
them without declaring them all explicitly. This is easily accomplished by
using “*’ to indicate a wild card:

| i mport java.util.*;

It is more common to import a collection of classes in this manner than to
import classes individually. Feedback

The static keyword

Ordinarily, when you create a class you are describing how objects of that
class look and how they will behave. You don’t actually get anything until
you create an object of that class with new, and at that point data storage
is created and methods become available. Feedback

But there are two situations in which this approach is not sufficient. One
is if you want to have only one piece of storage for a particular piece of
data, regardless of how many objects are created, or even if no objects are
created. The other is if you need a method that isn’t associated with any
particular object of this class. That is, you need a method that you can call
even if no objects are created. You can achieve both of these effects with
the static keyword. When you say something is static, it means that data
or method is not tied to any particular object instance of that class. So
even if you've never created an object of that class you can call a static
method or access a piece of static data. With ordinary, non-static data
and methods you must create an object and use that object to access the
data or method, since non-static data and methods must know the
particular object they are working with. Of course, since static methods
don’t need any objects to be created before they are used, they cannot
directly access non-static members or methods by simply calling those

Chapter 2: Everything is an Object 101

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_425
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_426
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_427

other members without referring to a named object (since non-static
members and methods must be tied to a particular object). Feedback

Some object-oriented languages use the terms class data and class
methods, meaning that the data and methods exist only for the class as a
whole, and not for any particular objects of the class. Sometimes the Java
literature uses these terms too. Feedback

To make a field or method static, you simply place the keyword before
the definition. For example, the following produces a static field and
initializes it: Feedback

class StaticTest {
static int i = 47;

}

Now even if you make two StaticTest objects, there will still be only one
piece of storage for StaticTest.i. Both objects will share the same i.
Consider: Feedback

StaticTest stl
StaticTest st2

new StaticTest();
new StaticTest();

At this point, both st1.i and st2.i have the same value of 47 since they
refer to the same piece of memory. Feedback

There are two ways to refer to a static variable. As indicated above, you
can name it via an object, by saying, for example, st2.i. You can also refer
to it directly through its class name, something you cannot do with a non-
static member. (This is the preferred way to refer to a static variable
since it emphasizes that variable’s static nature.) Feedback

StaticTest.i ++;

The ++ operator increments the variable. At this point, both st1.i and
st2.i will have the value 48. Feedback

Similar logic applies to static methods. You can refer to a static method
either through an object as you can with any method, or with the special
additional syntax ClassName.method(). You define a static method in
a similar way: Feedback

| class StaticFun {

102 Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_428
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_429
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_430
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_431
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_432
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_433
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_434
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_435

static void incr() { StaticTest.i++; }

r

You can see that the StaticFun method incr() increments the static
data i using the ++ operator. You can call incr() in the typical way,
through an object: Feedback

Stati cFun sf = new StaticFun();
sf.incr();

Or, because incr() is a static method, you can call it directly through its
Class: Feedback

| StaticFun.incr();

While static, when applied to a field, definitely changes the way the data
is created (one for each class vs. the non-static one for each object), when
applied to a method it’s not so dramatic. An important use of static for
methods is to allow you to call that method without creating an object.
This is essential, as we will see, in defining the main() method that is the
entry point for running an application. Feedback

Like any method, a static method can create or use named objects of its
type, so a static method is often used as a “shepherd” for a flock of
instances of its own type. Feedback

Your first Java program

Finally, here’s the first complete program. It starts by printing a string,

and then the date, using the Date class from the Java standard library.
Feedback

/1 HelloDate.java
i mport java.util.*;

public class Hell oDate {
public static void main(String[] args) {
Systemout.printin("Hello, it's: ");
System out. println(new Date());
}
}

Chapter 2: Everything is an Object 103

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_436
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_437
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_438
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_439
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_440

At the beginning of each program file, you must place the import
statement to bring in any extra classes you’ll need for the code in that file.
Note that I say “extra.” That’s because there’s a certain library of classes
that are automatically brought into every Java file: java.lang. Start up
your Web browser and look at the documentation from Sun. (If you
haven’t downloaded it from java.sun.com or otherwise installed the Java
documentation, do so now4). If you look at the list of the packages, you’ll
see all the different class libraries that come with Java. Select java.lang.
This will bring up a list of all the classes that are part of that library. Since
java.lang is implicitly included in every Java code file, these classes are
automatically available. There’s no Date class listed in java.lang, which
means you must import another library to use that. If you don’t know the
library where a particular class is, or if you want to see all of the classes,
you can select “Tree” in the Java documentation. Now you can find every
single class that comes with Java. Then you can use the browser’s “find”
function to find Date. When you do you'll see it listed as java.util.Date,
which lets you know that it’s in the util library and that you must import
java.util.* in order to use Date. Feedback

If you go back to the beginning, select java.lang and then System, you’ll
see that the System class has several fields, and if you select out you’ll
discover that it’s a static PrintStream object. Since it’s static you don’t
need to create anything. The out object is always there and you can just
use it. What you can do with this out object is determined by the type it
is: a PrintStream. Conveniently, PrintStream is shown in the
description as a hyperlink, so if you click on that you’ll see a list of all the
methods you can call for PrintStream. There are quite a few and these
will be covered later in this book. For now all we’re interested in is
println(), which in effect means “print what I'm giving you out to the
console and end with a new line.” Thus, in any Java program you write
you can say System.out.println("things"); whenever you want to
print something to the console. Feedback

4 The Java compiler and documentation from Sun was not included on this book’s CD
because it tends to change regularly. By downloading it yourself you will get the most
recent version.

104 Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_441
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_442

The name of the class is the same as the name of the file. When you're
creating a stand-alone program such as this one, one of the classes in the
file must have the same name as the file. (The compiler complains if you
don’t do this.) That class must contain a method called main() with this
signature: Feedback

| public static void main(String[] args) {

The public keyword means that the method is available to the outside
world (described in detail in Chapter 5). The argument to main() is an
array of String objects. The args won’t be used in this program, but the
Java compiler insists that they be there because they hold the arguments
from the command line. Feedback

The line that prints the date is quite interesting: Feedback
| Systemout. println(new Date());

The argument is a Date object that is being created just to send its value
to println(). As soon as this statement is finished, that Date is
unnecessary, and the garbage collector can come along and get it anytime.
We don’t need to worry about cleaning it up. Feedback

Compiling and running

To compile and run this program, and all the other programs in this book,
you must first have a Java programming environment. There are a
number of third-party development environments, but in this book we
will assume that you are using the JDK from Sun, which is free. If you are
using another development system5, you will need to look in the
documentation for that system to determine how to compile and run
programs, Feedback

Get on the Internet and go to java.sun.com. There you will find
information and links that will lead you through the process of
downloading and installing the JDK for your particular platform. Feedback

5 IBM’s “jikes” compiler is a common alternative, as it is significantly faster than Sun’s
javac.

Chapter 2: Everything is an Object 105

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_443
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_444
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_445
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_446
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_447
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_448

Once the JDK is installed, and you've set up your computer’s path
information so that it will find javac and java, download and unpack the
source code for this book (you can find it on the CD ROM that’s bound in
with this book, or at www.BruceEckel.com). This will create a
subdirectory for each chapter in this book. Move to subdirectory co2 and
type: Feedback

| javac Hell oDate.java

This command should produce no response. If you get any kind of an
error message it means you haven'’t installed the JDK properly and you
need to investigate those problems. Feedback

On the other hand, if you just get your command prompt back, you can
type:
| java Hel | oDate

and you’ll get the message and the date as output. Feedback

This is the process you can use to compile and run each of the programs in
this book. However, you will see that the source code for this book also
has a file called build.xml in each chapter, and this contains “ant”
commands for automatically building the files for that chapter. Buildfiles
and ant (including where to download it) are described more fully in
Chapter 15, but once you have ant installed (from
http://jakarta.apache.org/ant) you can just type ‘ant’ at the command
prompt to compile and run the programs in each chapter. If you haven’t
installed ant yet, you can just type the javac and java commands by
hand. Feedback

Comments and embedded
documentation

There are two types of comments in Java. The first is the traditional C-
style comment that was inherited by C++. These comments begin with a
/* and continue, possibly across many lines, until a */. Note that many
programmers will begin each line of a continued comment with a *, so
you’ll often see:

106 Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_449
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_450
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_451
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_452

/* This is a comment
* that continues

* across |ines

*/

Remember, however, that everything inside the /* and */ is ignored, so
there’s no difference in saying: Feedback

/* This is a comment that
conti nues across |lines */

The second form of comment comes from C++. It is the single-line
comment, which starts at a // and continues until the end of the line. This
type of comment is convenient and commonly used because it’s easy. You
don’t need to hunt on the keyboard to find / and then * (instead, you just
press the same key twice), and you don’t need to close the comment. So
you will often see: Feedback

| // This is a one-line conmmrent

Comment documentation

One of the better ideas in Java is that writing code isn’t the only important
activity—documenting it is at least as important. Possibly the biggest
problem with documenting code has been maintaining that
documentation. If the documentation and the code are separate, it
becomes a hassle to change the documentation every time you change the
code. The solution seems simple: link the code to the documentation. The
easiest way to do this is to put everything in the same file. To complete the
picture, however, you need a special comment syntax to mark the
documentation, and a tool to extract those comments and put them in a
useful form. This is what Java has done. Feedback

The tool to extract the comments is called javadoc, and it is part of the
JDK installation. It uses some of the technology from the Java compiler to
look for special comment tags that you put in your programs. It not only
extracts the information marked by these tags, but it also pulls out the
class name or method name that adjoins the comment. This way you can
get away with the minimal amount of work to generate decent program
documentation. Feedback

Chapter 2: Everything is an Object 107

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_453
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_454
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_455
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_456

The output of javadoc is an HTML file that you can view with your Web
browser. Thus, javadoc allows you to create and maintain a single source
file and automatically generate useful documentation. Because of javadoc
we have a standard for creating documentation, and it’s easy enough that

we can expect or even demand documentation with all Java libraries.
Feedback

In addition, you can write your own javadoc handlers, called doclets, if
you want to perform special operations on the information processed by
javadoc (output in a different format, for example). Doclets are
introduced in Chapter 15. Feedback

What follows is only an introduction and overview of the basics of
javadoc. A thorough description can be found in the JDK documentation
downloadable from java.sun.com (note that this documentation doesn’t
come packed with the JDK; you have to do a separate download to get it).
When you unpack the documentation, look in the “tooldocs” subdirectory
(or follow the “tooldocs” link). Feedback

Syntax

All of the javadoc commands occur only within /** comments. The
comments end with */ as usual. There are two primary ways to use
javadoc: embed HTML, or use “doc tags.” Standalone doc tags are
commands that start with a ‘@’ and are placed at the beginning of a
comment line. (A leading ‘*’, however, is ignored.) Inline doc tags can
appear anywhere within a javadoc comment, also start with a ‘@’ but are
surrounded by curly braces. Feedback

There are three “types” of comment documentation, which correspond to
the element the comment precedes: class, variable, or method. That is, a
class comment appears right before the definition of a class; a variable
comment appears right in front of the definition of a variable, and a
method comment appears right in front of the definition of a method. As a
simple example: Feedback

/** A class comment */
public class docTest {
/** A variable coment */
public int i;
/** A nethod coment */

108 Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_457
mailto:TIJ3@MindView.net?Subject=[TIJ3]A0446
mailto:TIJ3@MindView.net?Subject=[TIJ3]A0447
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_458
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_459

‘ public void f() {}
}

Note that javadoc will process comment documentation for only public
and protected members. Comments for private and package-access
members (see Chapter 5) are ignored and you’ll see no output. (However,
you can use the -private flag to include private members as well.) This
makes sense, since only public and protected members are available
outside the file, which is the client programmer’s perspective. However,
all class comments are included in the output. Feedback

The output for the above code is an HTML file that has the same standard
format as all the rest of the Java documentation, so users will be
comfortable with the format and can easily navigate your classes. It’s
worth entering the above code, sending it through javadoc and viewing
the resulting HTML file to see the results. Feedback

Embedded HTML

Javadoc passes HTML commands through to the generated HTML
document. This allows you full use of HTML; however, the primary
motive is to let you format code, such as: Feedback

/**

* <pre>

* Systemout.println(new Date());
* </ pre>

*/

You can also use HTML just as you would in any other Web document to
format the regular text in your descriptions: Feedback

/**

* You can <enpeven</enr insert a |ist:
*

* <|i> ltemone

* ltemtwo

* ltemthree

*

*/

Note that within the documentation comment, asterisks at the beginning
of a line are thrown away by javadoc, along with leading spaces. Javadoc

Chapter 2: Everything is an Object 109

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_460
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_461
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_462
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_463

reformats everything so that it conforms to the standard documentation
appearance. Don’t use headings such as <h1> or <hr> as embedded
HTML because javadoc inserts its own headings and yours will interfere
with them, Feedback

All types of comment documentation—class, variable, and method—can
support embedded HTML. Eeedback

Some example tags

Here are some of the javadoc tags available for code documentation.
Before trying to do anything serious using javadoc, you should consult the
javadoc reference in the downloadable JDK documentation to get full
coverage of the way to use javadoc. Feedback

@see: referring to other classes

@see tags allow you to refer to the documentation in other classes.
Javadoc will generate HTML with the @see tags hyperlinked to the other
documentation. The forms are: Feedback

@ee cl assnane
@ee fully-qualified-classnane
@ee fully-qualified-classnane#net hod- nane

Each one adds a hyperlinked “See Also” entry to the generated
documentation. Javadoc will not check the hyperlinks you give it to make
sure they are valid. Feedback

{@link package.class#member label}

Very similar to @see, except that it can be used inline and uses the label
as the hyperlink text rather than “See Also.”

{@docRoot}

Produces the relative path to the documentation root directory. Useful for
explicit hyperlinking to pages in the documentation tree.

{@inheritDoc}

Inherits the documentation from the nearest base class of this class into
the current doc comment.

110 Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_464
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_465
mailto:TIJ3@MindView.net?Subject=[TIJ3]A0448
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_466
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_467

@version
This is of the form:
| @ersion version-infornation

in which version-information is any significant information you see fit
to include. When the -version flag is placed on the javadoc command
line, the version information will be called out specially in the generated
HTML documentation. Feedback

@author
This is of the form:
| @ut hor aut hor-information

in which author-information is, presumably, your name, but it could
also include your email address or any other appropriate information.
When the -author flag is placed on the javadoc command line, the author
information will be called out specially in the generated HTML
documentation. Feedback

You can have multiple author tags for a list of authors, but they must be
placed consecutively. All the author information will be lumped together
into a single paragraph in the generated HTML. Feedback

@since

This tag allows you to indicate the version of this code that began using a
particular feature. You’ll see it appearing in the HTML Java
documentation to indicate what version of the JDK is used. Feedback

@param
This is used for method documentation, and is of the form:
| @ar am par anet er - name descri ption

in which parameter-name is the identifier in the method parameter
list, and description is text that can continue on subsequent lines. The
description is considered finished when a new documentation tag is

Chapter 2: Everything is an Object 111

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_469
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_470
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_471
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_472

encountered. You can have any number of these, presumably one for each
parameter. Feedback

@return
This is used for method documentation, and looks like this:
| @eturn description

in which description gives you the meaning of the return value. It can
continue on subsequent lines. Feedback

@throws

Exceptions will be demonstrated in Chapter 9, but briefly they are objects
that can be “thrown” out of a method if that method fails. Although only
one exception object can emerge when you call a method, a particular
method might produce any number of different types of exceptions, all of
which need descriptions. So the form for the exception tag is:

| @hrows fully-qualified-class-nanme description

in which fully-qualified-class-name gives an unambiguous name of an
exception class that’s defined somewhere, and description (which can
continue on subsequent lines) tells you why this particular type of
exception can emerge from the method call. Feedback

@deprecated

This is used to indicate features that were superseded by an improved
feature. The deprecated tag is a suggestion that you no longer use this
particular feature, since sometime in the future it is likely to be removed.
A method that is marked @deprecated causes the compiler to issue a
warning if it is used. Feedback

Documentation example

Here is the first Java program again, this time with documentation
comments added:

/1: c02: HelloDate.java
i mport java.util.*;

112 Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_475
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_476
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_477
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_478

/** The first Thinking in Java exanpl e program
* Displays a string and today's date.
* @ut hor Bruce Eckel
* @ut hor www. BruceEckel . com
* @ersion 2.0
*/
public class Hell oDate {
/** Sole entry point to class & application
* @aram args array of string argunents
* @eturn No return val ue
* @xception exceptions No exceptions thrown
*/
public static void main(String[] args) {
Systemout.printin("Hello, it's: ");
Systemout. println(new Date());

}
Y 110~

The first line of the file uses my own technique of puttinga ‘//:’ as a
special marker for the comment line containing the source file name. That
line contains the path information to the file (in this case, co2 indicates
Chapter 2) followed by the file name®. The last line also finishes with a
comment, and this one (‘///:~’) indicates the end of the source code
listing, which allows it to be automatically updated into the text of this
book after being checked with a compiler and executed. Feedback

Coding style

The style described in the Code Conventions for the Java Programming
Language” is to capitalize the first letter of a class name. If the class name
consists of several words, they are run together (that is, you don’t use

6 Originally, I created a tool using Python (see www.Python.org) uses this information to
extract the code files, put them in appropriate subdirectories, and create makefiles. In this
edition, all the files are stored in CVS and automatically incorporated into this book using
a VBA (Visual Basic for Applications) macro. This new approach seems to work much
better in terms of code maintenance, mostly because of CVS.

7 http://java.sun.com/docs/codeconv/index.html. To preserve space in this book and
seminar presentations, not all of these guidelines could be followed.

Chapter 2: Everything is an Object 113

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_479

underscores to separate the names), and the first letter of each embedded
word is capitalized, such as: Feedback

cl ass Al'l TheCol or sO TheRai nbow { //

This is sometimes called “camel-casing.” For almost everything else:
methods, fields (member variables), and object reference names, the
accepted style is just as it is for classes except that the first letter of the
identifier is lowercase. For example: Feedback

cl ass Al |l TheCol or sO TheRai nbow {
i nt anl nt eger Repr esenti ngCol ors;
voi d changeTheHueO TheCol or (i nt newHue) {
/1

}
11

}

Of course, you should remember that the user must also type all these
long names, and so be merciful. Feedback

The Java code you will see in the Sun libraries also follows the placement
of open-and-close curly braces that you see used in this book. Feedback

Summary

The goal of this chapter is just enough Java to understand how to write a
simple program. You've also gotten an overview of the language and some
of its basic ideas. However, the examples so far have all been of the form
“do this, then do that, then do something else.” What if you want the
program to make choices, such as “if the result of doing this is red, do
that; if not, then do something else”? The support in Java for this

fundamental programming activity will be covered in the next chapter.
Feedback

Exercises

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

114 Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_480
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_481
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_482
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_483
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_484

1. Following the HelloDate.java example in this chapter, create a
“hello, world” program that simply prints out that statement. You
need only a single method in your class (the “main” one that gets
executed when the program starts). Remember to make it static
and to include the argument list, even though you don’t use the
argument list. Compile the program with javac and run it using
java. If you are using a different development environment than
the JDK, learn how to compile and run programs in that
environment, Feedback

2. Find the code fragments involving ATypeName and turn them
into a program that compiles and runs. Feedback

3. Turn the DataOnly code fragments into a program that compiles
and runs. Feedback

4, Modify Exercise 3 so that the values of the data in DataOnly are
assigned to and printed in main(). Feedback

5. Write a program that includes and calls the storage() method
defined as a code fragment in this chapter. Feedback

6. Turn the StaticFun code fragments into a working program.
Feedback

7. Write a program that prints three arguments taken from the
command line. To do this, you’ll need to index into the command-
line array of Strings. Feedback

8. Turn the AllTheColorsOfTheRainbow example into a program
that compiles and runs. Feedback

0. Find the code for the second version of HelloDate.java, which is
the simple comment documentation example. Execute javadoc
on the file and view the results with your Web browser. Feedback

10. Turn docTest into a file that compiles and then run it through
javadoc. Verify the resulting documentation with your Web
browser. Feedback

Chapter 2: Everything is an Object 115

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_485
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_486
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_487
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_488
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_489
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_490
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_491
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_492
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_493
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_494

11.

12.

13.

Add an HTML list of items to the documentation in Exercise 10.
Feedback

Take the program in Exercise 1 and add comment documentation
to it. Extract this comment documentation into an HTML file
using javadoc and view it with your Web browser. Feedback

In Chapter 4, locate the Overloading.java example and add
jabadoc documentation. Extract this comment documentation into

an HTML file using javadoc and view it with your Web browser.
Feedback

116

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_495
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap02_496
mailto:TIJ3@MindView.net?Subject=[TIJ3]A0449

3: Controlling
Program Flow

Like a sentient creature, a program must manipulate its
world and make choices during execution.

In Java you manipulate data using operators, and you make choices with
execution control statements. Java was inherited from C++, so most of
these statements and operators will be familiar to C and C++
programmers. Java has also added some improvements and
simplifications. Feedback

If you find yourself floundering a bit in this chapter, make sure you go
through the multimedia CD ROM bound into this book: Foundations for
Java. It contains audio lectures, slides, exercises, and solutions
specifically designed to bring you up to speed with the fundamentals
necessary to learn Java. Feedback

Using Java operators

An operator takes one or more arguments and produces a new value. The
arguments are in a different form than ordinary method calls, but the
effect is the same. Addition (+), subtraction and unary minus (-),
multiplication (*), division (/), and assignment (=) all work much the
same in any programming language. Feedback

All operators produce a value from their operands. In addition, an
operator can change the value of an operand. This is called a side effect.
The most common use for operators that modify their operands is to
generate the side effect, but you should keep in mind that the value

produced is available for your use just as in operators without side effects.
Feedback

117

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_497
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_498
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_499
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_500

Almost all operators work only with primitives. The exceptions are ‘=",
‘=="and ‘!=’, which work with all objects (and are a point of confusion for
objects). In addition, the String class supports ‘+’ and ‘+ =", Feedback

Precedence

Operator precedence defines how an expression evaluates when several
operators are present. Java has specific rules that determine the order of
evaluation. The easiest one to remember is that multiplication and
division happen before addition and subtraction. Programmers often
forget the other precedence rules, so you should use parentheses to make
the order of evaluation explicit. For example: Feedback

|a=x+y—2/2+z;

has a very different meaning from the same statement with a particular
grouping of parentheses: Feedback

| a=x+(y- 2)/(2+72);

Assignment

Assignment is performed with the operator =. It means “take the value of
the right-hand side (often called the rvalue) and copy it into the left-hand
side (often called the lvalue).” An rvalue is any constant, variable or
expression that can produce a value, but an lvalue must be a distinct,
named variable. (That is, there must be a physical space to store the
value.) For instance, you can assign a constant value to a variable:

|a:4;

but you cannot assign anything to constant value—it cannot be an lvalue.
(You can’t say 4 = aj.) Feedback

Assignment of primitives is quite straightforward. Since the primitive
holds the actual value and not a reference to an object, when you assign
primitives you copy the contents from one place to another. For example,
if you say a = b for primitives, then the contents of b are copied into a. If
you then go on to modify a, b is naturally unaffected by this modification.

As a programmer, this is what you’ve come to expect for most situations.
Feedback

118 Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_501
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_502
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_503
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_504
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_505

When you assign objects, however, things change. Whenever you
manipulate an object, what you're manipulating is the reference, so when
you assign “from one object to another” you're actually copying a
reference from one place to another. This means that if you say ¢ = d for
objects, you end up with both ¢ and d pointing to the object that,
originally, only d pointed to. Here’s an example that demonstrates this
behavior: Feedback

/1: c03: Assignnent.java
/1 Assignnment with objects is a bit tricky.
i mport com bruceeckel . si npl etest. *;

cl ass Nunber {
int i;
}
public class Assignnment {

static Test nonitor = new Test();
public static void main(String[] args) {

Nunmber nl new Nunber () ;

Nunber n2 new Nunber () ;

nl.i =9;

n2.i = 47;

Systemout.printin("1: nl.i: " + nl.i +
",on2.i: "+ n2.i);

nl = n2;

Systemout.printin("2: nl.i: " + nl.i +
",on2.i: "+ n2.i);

nl.i = 27;

Systemout.printIn("3: nl.i: " + nl.i +
",on2.i: "+ n2.i);

noni t or. expect (new String[] {
"1: nl.i: 9, n2.i: 47",
"2: nl.i: 47, n2.i: 47",
"3: nl.i: 27, n2.i: 27"
1)
}
Y I~

First, notice that something new has been added. The line:

| i mport com bruceeckel . si npl etest. *;

Chapter 3: Controlling Program Flow 119

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_506

Imports the “simpletest” library that has been created to test the code in
this book, and is explained in Chapter 15. At the beginning of the
Assignment class, you see the line:

| static Test nmonitor = new Test();

This creates an instance of the simpletest class Test, called monitor.
Finally, at the end of main(), you see the statement:

noni t or. expect (new String[] {
"1 nl.i: 9, n2.i: 47",
"2: nl.i: 47, n2.i: 47",
"3: nl.i: 27, n2.i: 27"

1)

This is the expected output of the program, expressed as an array of
String objects. When the program is run, it not only prints out the
output, but it compares it to this array to verify that the array is correct.
Thus, when you see a program in this book that uses simpletest, you will
also see an expect() call that will show you what the output of the
program is. This way, you see validated output from the program.

The Number class is simple, and two instances of it (n1 and n2) are
created within main(). The i value within each Number is given a
different value, and then n2 is assigned to n1, and n1 is changed. In many
programming languages you would expect n1 and n2 to be independent
at all times, but because you’ve assigned a reference, you'll see the output
in the expect() statement. Changing the n1 object appears to change the
n2 object as well! This is because both n1 and n2 contain the same
reference, which is pointing to the same object. (The original reference
that was in n1, that pointed to the object holding a value of 9, was
overwritten during the assignment and effectively lost; its object will be
cleaned up by the garbage collector.) Feedback

This phenomenon is often called aliasing and it’s a fundamental way that
Java works with objects. But what if you don’t want aliasing to occur in
this case? You could forego the assignment and say: Feedback

| nl.i = n2.i;

This retains the two separate objects instead of tossing one and tying n1
and n2 to the same object, but you’ll soon realize that manipulating the

120 Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_508
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_509

fields within objects is messy and goes against good object-oriented
design principles. This is a nontrivial topic, so it is left for Appendix A,
which is devoted to aliasing. In the meantime, you should keep in mind
that assignment for objects can add surprises. Feedback

Aliasing during method calls
Aliasing will also occur when you pass an object into a method:

/1: c03: Passhj ect.java

/1 Passing objects to nmethods nmay not be what
/1 you're used to.

i mport com bruceeckel . si npl etest. *;

class Letter {
char c;

}

public class PassObject {
static Test nonitor = new Test();
static void f(Letter y) {

y.c = '2z2";
}

public static void main(String[] args) {
Letter x = new Letter();

Xx.c ="'a',;
Systemout.printin("1l: x.c: " + Xx.c);
f(x);
Systemout.println("2: x.c: " + x.c);
noni t or. expect (new String[] {
"1: x.c: a",
"2: x.c: z"
1)
}
Y I~

In many programming languages, the method f() would appear to be
making a copy of its argument Letter y inside the scope of the method.
But once again a reference is being passed so the line Feedback

y.c ='z";

is actually changing the object outside of f(). The output in the expect()
statement shows this. Feedback

Chapter 3: Controlling Program Flow 121

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_510
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_511
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_512

Aliasing and its solution is a complex issue and, although you must wait
until Appendix A for all the answers, you should be aware of it at this
point so you can watch for pitfalls. Feedback

Mathematical operators

The basic mathematical operators are the same as the ones available in
most programming languages: addition (+), subtraction (-), division (/),
multiplication (*) and modulus (%, which produces the remainder from
integer division). Integer division truncates, rather than rounds, the
result. Feedback

Java also uses a shorthand notation to perform an operation and an
assignment at the same time. This is denoted by an operator followed by
an equal sign, and is consistent with all the operators in the language
(whenever it makes sense). For example, to add 4 to the variable x and
assign the result to x, use: x += 4. Feedback

This example shows the use of the mathematical operators:

//: c03: Mat hOps. j ava

/1 Denonstrates the nathematical operators.
i mport com bruceeckel . si npl etest. *;

import java.util.*;

public class Mat hOps {
static Test nonitor = new Test();
/1 Shorthand to print a string and an int:
static void printInt(String s, int i) {
Systemout.printin(s +" =" +1i);
}
/1 Shorthand to print a string and a float:
static void printFloat(String s, float f) {
Systemout.printin(s +" =" + f);
}
public static void main(String[] args) {
/1l Create a random nunber generator,
/1 seeds with current tine by default:
Random rand = new Random();
int i, j, k;
/1 Choose value fromO to 99:
i rand. next | nt (100);
k rand. next | nt (100);

122 Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_513
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_514
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_515

pri

i
i
i
i
i
j

float u,

\'

* o~ 1

nt
j
j
k
k
k

%

+ >
=
~ X

i "
j; printint("k * j",
i j"

", J); print
printint("j +
printint("j -
printint("k /

—

printint("k %

% k; printint("j % k" j);
/1 Fl oating-point number tests:

v,w, [/ applies to doubles, too

rand. next Fl oat () ;
w = rand. next Fl oat () ;
printFloat("v", v); printFloat("w', w);

w, printFloat("v + w', u);
w, printFloat("v - w', u);
w, printFloat("v * w', u);
w, printFloat("v / w', u);

/1 the follow ng al so works for

byte, short, int, |ong,

/1 and doubl e:

u=yv+
u=yv -
u=yvH#=*
u=yv/
/!l char,
u += v;
u-=v,;
u *=v;
ul/=v;
noni t or
"R |
" 980 k
"R |
"R |
" 980 k
" 980 k
" 980 k
"R |
"% v
"% w
"% v
"% v
"% v
"% v
"% u
"% u
"% u
"% u
1)

printFloat("u += v", u);
printFloat("u -= v", u);
printFloat("u *= v", u);

printFloat("u /= v", u);

.expect(new String[] {

= -2\ d+",
= -\ d+",

W+ k = -2\ d+",

-k = -A\d+",

[j = -2\d+",

W o= -\ d+,

%ij = -2A\d+",

% k = -2\ d+",

= -2\ dA\ L\ dH(E- AN\ d) 2",
= -2\ dA\ L\ dH(E- AN\ d) 2",

I

W+ w = -2\ dA N\ d+(E- 2\ \ d) 22",

- w = -\ dA L\ dH(E- 2\ d) 27",

Wx w = -2 dH L\ d+(E- 2\ \ d) 22",

I w = -2\ dA\ AN dH(E- A\ d) 22",

W= v o= -2\ dH L\ d+(E- 2\ d) 272",
c= v o= - ANdH L\ dH(E- 2\ \ d) 22",
W = v o= -2\ dH L\ d+(E- 2\ d) 22",
/= v = -2\ dA\ .\ d+(E- 2\ d) 22"

Chapter 3: Controlling Program Flow

123

| Y I~

The first thing you will see are some shorthand methods for printing: the
printInt() prints a String followed by an int and the pringFloat()
prints a String followed by a float. Feedback

To generate numbers, the program first creates a Random object.
Because no arguments are passed during creation, Java uses the current
time as a seed for the random number generator. The program generates
a number of different types of random numbers with the Random object
simply by calling the methods: nextInt() and nextFloat() (you can
also call nextLong() or nextDouble()). Feedback

The modulus operator, when used with the result of the random number
generator, limits the result to an upper bound of the operand minus one
(99 in this case). Feedback

Regular expressions

Since random numbers are used to generate the output for this program,
the expect() statement can’t just show literal output as it did before,
since the output will vary from one run to the next. To solve this problem,
regular expressions, a new feature introduced in Java JDK 1.4 (but an old
feature in languages like Perl and Python) will be used inside the

expect() statement. Although coverage of this intensely powerful tool
doesn’t occur until Chapter 12, to understand these statements you’ll need
an introduction to regular expressions. Here, you’ll learn just enough to
read the expect() statements, but if you want a full description, look up

java.util.regex.Pattern in the downloadable JDK documentation.
Feedback

A regular expression is a way to describe strings in general terms, so that
you can say: “if a string has these things in it, then it matches what I'm
looking for.” For example, to say that a number might or might not be
preceded by a minus sign, you put in the minus sign followed by a
question mark, like this: Feedback

-2

To describe an integer, you say that it’s one more digits. In regular
expressions, a digit is ‘\d’, but in a Java String you have to “escape” the

124 Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_516
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_517
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_518
mailto:TIJ3@MindView.net?Subject=[TIJ3]A0450
mailto:TIJ3@MindView.net?Subject=[TIJ3]A0451

backslash by putting in a second backslash: ‘\\d’. To indicate “one or
more of the preceding expression” in regular expressions, you use the ‘+’.

So to say “possibly a minus sign, followed by one or more digits,” you
Write: Feedback

-2A\d+

Which you can see in the first lines of the expect() statement, above.

One thing that is not part of the regular expression syntax is the ‘%% ’
(note the space included for readability) at the beginning of the lines in
the expect() statement. This is a flag used by simpletest to indicate
that the rest of the line is a regular expression. So you won'’t see it in

normal regular expressions, only in simpletest expect() statements.
Feedback

Any other characters that are not special characters to regular expression
searches are treated as exact matches. So in the first line:

| Woj = -?\\d+

The 4 = is matched exactly. However, in the third line the ‘+’in § + kK’
must be escaped because it is a special regular expression character, as is
“*’_The rest of the lines should be understandable from this introduction.
Later in the book, when additional features of regular expressions are
used inside expect() statements, they will be explained. Feedback

Unary minus and plus operators

The unary minus (-) and unary plus (+) are the same operators as binary
minus and plus. The compiler figures out which use is intended by the
way you write the expression. For instance, the statement Feedback

|x:—a;

has an obvious meaning. The compiler is able to figure out: Feedback

| X =a* -b;
but the reader might get confused, so it is clearer to say: Feedback

|x=a*(-b);

Chapter 3: Controlling Program Flow 125

mailto:TIJ3@MindView.net?Subject=[TIJ3]A0452
mailto:TIJ3@MindView.net?Subject=[TIJ3]A0453
mailto:TIJ3@MindView.net?Subject=[TIJ3]A0454
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_519
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_520
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_521

Unary minus inverts the sign on the data. Unary plus provides symmetry
with unary minus, although it doesn’t have any effect. Feedback

Auto increment and decrement

Java, like C, is full of shortcuts. Shortcuts can make code much easier to
type, and either easier or harder to read. Feedback

Two of the nicer shortcuts are the increment and decrement operators
(often referred to as the auto-increment and auto-decrement operators).
The decrement operator is -- and means “decrease by one unit.” The
increment operator is ++ and means “increase by one unit.” If a is an int,
for example, the expression ++a is equivalent to (a = a + 1). Increment
and decrement operators not only modify the variable, but also produce
the value of the variable as a result. Feedback

There are two versions of each type of operator, often called the prefix and
postfix versions. Pre-increment means the ++ operator appears before
the variable or expression, and post-increment means the ++ operator
appears after the variable or expression. Similarly, pre-decrement means
the -- operator appears before the variable or expression, and post-
decrement means the -- operator appears after the variable or expression.
For pre-increment and pre-decrement, (i.e., ++a or --a), the operation is
performed and the value is produced. For post-increment and post-
decrement (i.e. a++ or a--), the value is produced, then the operation is
performed. As an example: Feedback

/1: ¢c03: Autolnc.java
/1 Denobnstrates the ++ and -- operators.
i mport com bruceeckel . si npl etest. *;

public class Autolnc {
static Test nmonitor = new Test();
public static void main(String[] args) {

int i =1;

Systemout.printin("i : " +1i);
Systemout.printin("++i : " + ++i); // Pre-increnent
Systemout.printin("i++ : " + i++); // Post-increnent
Systemout.printin("i : " +1i);
Systemout.printin("--i : " + --i); // Pre-decrenent
Systemout.printin("i-- : " +i--); // Post-decrenent
Systemout.printin("i : " +1i);

126 Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_522
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_523
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_524
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_525

nmoni t or. expect (new String[] {

i o1,
"o 2",
i+ o 2",
"i o3,

"liono2n,
e ooo2n,
"o

1)
}
Y 11~

You can see that for the prefix form you get the value after the operation
has been performed, but with the postfix form you get the value before the
operation is performed. These are the only operators (other than those
involving assignment) that have side effects. (That is, they change the
operand rather than using just its value.) Feedback

The increment operator is one explanation for the name C++, implying
“one step beyond C.” In an early Java speech, Bill Joy (one of the Java
creators), said that “Java=C++--" (C plus plus minus minus), suggesting
that Java is C++ with the unnecessary hard parts removed and therefore a
much simpler language. As you progress in this book you’ll see that many
parts are simpler, and yet Java isn’t that much easier than C++. Feedback

Relational operators

Relational operators generate a boolean result. They evaluate the
relationship between the values of the operands. A relational expression
produces true if the relationship is true, and false if the relationship is
untrue. The relational operators are less than (<), greater than (>), less
than or equal to (<=), greater than or equal to (>=), equivalent (==) and
not equivalent (!=). Equivalence and nonequivalence work with all built-

in data types, but the other comparisons won’t work with type boolean.
Feedback

Testing object equivalence

The relational operators == and != also work with all objects, but their
meaning often confuses the first-time Java programmer. Here’s an
example: Feedback

Chapter 3: Controlling Program Flow 127

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_527
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_528
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_529
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_530

/1: ¢03: Equi val ence. j ava
i mport com bruceeckel . si mpl etest. *;

public class Equival ence {
static Test monitor = new Test();
public static void main(String[] args) {
Integer nl = new | nteger(47);
I nteger n2 = new | nteger(47);
Systemout.println(nl == n2);
Systemout.println(nl I'= n2);
nmoni t or. expect (new String[] {
"fal se",
"true"
1)
}
Y I~

The expression System.out.println(n1 == n2) will print the result of
the boolean comparison within it. Surely the output should be true and
then false, since both Integer objects are the same. But while the
contents of the objects are the same, the references are not the same and
the operators == and != compare object references. So the output is

actually false and then true. Naturally, this surprises people at first.
Feedback

What if you want to compare the actual contents of an object for
equivalence? You must use the special method equals() that exists for
all objects (not primitives, which work fine with == and !=). Here’s how
it’s used: Feedback

/1: c03: Equal sMet hod. j ava
i mport com bruceeckel . si npl etest. *;

public class Equal sMet hod {

static Test nmonitor = new Test();

public static void main(String[] args) {
Integer nl = new | nteger(47);
I nteger n2 = new | nteger(47);
System out. println(nl. equal s(n2));
noni t or. expect (new String[] {

"true"

1),

128

Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_531
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_532

| Y I~

The result will be true, as you would expect. Ah, but it’s not as simple as
that. If you create your own class, like this: Feedback

/1: c03: Equal sMet hod2. j ava
i mport com bruceeckel . si nmpl etest. *;

cl ass Val ue {
int i;

}

public class Equal sMet hod2 {
static Test monitor = new Test();
public static void main(String[] args) {
Val ue vl = new Val ue();
Val ue v2 = new Val ue();
vli.i =v2.i = 100;
System out. println(vl. equal s(v2));
nmoni t or. expect (new String[] {
"fal se”
1)
}
Y I~

you’re back to square one: the result is false. This is because the default
behavior of equals() is to compare references. So unless you override
equals() in your new class you won’t get the desired behavior.
Unfortunately, you won’t learn about overriding until Chapter 7, but being
aware of the way equals() behaves might save you some grief in the
meantime, Feedback

Most of the Java library classes implement equals() so that it compares
the contents of objects instead of their references. Feedback

Logical operators

Each of the logical operators AND (&&), OR (||) and NOT (!) produces a
boolean value of true or false based on the logical relationship of its
arguments. This example uses the relational and logical operators: Feedback

/1 Relational and | ogical operators.

/1: c03: Bool.java
i mport com bruceeckel . si npl etest. *;

Chapter 3: Controlling Program Flow 129

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_533
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_534
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_535
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_536

i mport java.util.*;

public class Bool {
static Test monitor = new Test();
public static void main(String[] args) {
Random rand = new Randon{);
int i = rand.nextlnt(100);
int j = rand.nextlnt(100);
Systemout.println("i
Systemout.println("j
Systemout.println("i
Systemout.println("i
i
i
i
i

+i);
1),
jis "+ (i >j));
jis " o+ (i <j));
>=) is " o+ (1 >=]));
<= j is "+ (i <=7j));
Systemout.println("i ==j is " + (i ==1j));
Systemout.println("i I'=j is "™ + (i '=7j));
/l Treating an int as a boolean is not |egal Java:
/1! Systemout.printin("i & j is " + (i &&j));
/11 Systemout.printin("i || j is "™ + (i || j));
/1! Systemout.println("!'i is " + 1i);
Systemout.printIn("(i < 10) && (j < 10) is "
+ ((i <10) && (j < 10)));
Systemout.printIn("(i <10) || (j < 10) is "
+ ((i <10) [] (j <10)));
nmoni t or. expect (new String[] {

AN A T 1|

System out. println("
System out. println("

"Woi = -A\d+",
"Woj = -A\d+",
"O®i >j is (true|false)",
"O®i < j is (true|false)",

"O®i >=j is (true|false)”,
"O®i <=j is (true|false)”,
"O®i ==] is (true|false)",
"O®i !'=1j is (true|false)”,
"O®\\ (i < 10\\) && \\(j < 10\\) is (true|false)",
"N\ (i < 10V\) AN\ A\ (j < 10\\) is (true|lfalse)"
1)
}
Y I~

In the above regular expressions in the expect() statement, parentheses
have the effect of grouping an expression, and the vertical bar ‘|’ means
OR. So:

| (true|fal se)

130 Thinking in Java wwuw.BruceEckel.com

Means that this part of the string may be either ‘true’ or ‘false’. Because
these characters are special in regular expressions, they must be escaped
with a ‘\\’ if you want them to appear as ordinary characters in the
expression. Feedback

You can apply AND, OR, or NOT to boolean values only. You can’t use a
non-boolean as if it were a boolean in a logical expression as you can in
C and C++. You can see the failed attempts at doing this commented out
with a //! comment marker. The subsequent expressions, however,
produce boolean values using relational comparisons, then use logical
operations on the results. Feedback

Note that a boolean value is automatically converted to an appropriate
text form if it’s used where a String is expected. Feedback

You can replace the definition for int in the above program with any other
primitive data type except boolean. Be aware, however, that the
comparison of floating-point numbers is very strict. A number that is the
tiniest fraction different from another number is still “not equal.” A
number that is the tiniest bit above zero is still nonzero. Feedback

Short-circuiting

When dealing with logical operators you run into a phenomenon called
“short circuiting.” This means that the expression will be evaluated only
until the truth or falsehood of the entire expression can be unambiguously
determined. As a result, all the parts of a logical expression might not be
evaluated. Here’s an example that demonstrates short-circuiting:

/1: c03:ShortCircuit.java

/1 Denonstrates short-circuiting behavior.
/1 with |ogical operators.

i mport com bruceeckel . si npl etest. *;

public class ShortCircuit {
static Test nonitor = new Test();
static boolean testl(int val) {
Systemout.printin("testl(" + val + ")");
Systemout.printin("result: " + (val < 1));
return val < 1;

}

static boolean test2(int val) {

Chapter 3: Controlling Program Flow 131

mailto:TIJ3@MindView.net?Subject=[TIJ3]A0455
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_537
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_538
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_539

Systemout.println("test2(" + val + ")");
Systemout.println("result: " + (val < 2));
return val < 2;

}

static boolean test3(int val) {
Systemout.println("test3(" + val + ")");
Systemout.println("result: " + (val < 3));
return val < 3;

}

public static void main(String[] args) {

if(testl(0) && test2(2) && test3(2))

Systemout.println("expression is true");
el se

Systemout.println("expression is false");
nmoni t or. expect (new String[] {

"test1(0)",

"result: true",

"test2(2)",

"result: false",

"expression is fal se"

1)
}
Y 11~

Each test performs a comparison against the argument and returns true
or false. It also prints information to show you that it’s being called. The
tests are used in the expression: Feedback

| if(test1(0) && test2(2) && test3(2))

You might naturally think that all three tests would be executed, but the
output shows otherwise. The first test produced a true result, so the
expression evaluation continues. However, the second test produced a
false result. Since this means that the whole expression must be false,
why continue evaluating the rest of the expression? It could be expensive.
The reason for short-circuiting, in fact, is that you can get a potential
performance increase if all the parts of a logical expression do not need to
be evaluated. Feedback

Bitwise operators

The bitwise operators allow you to manipulate individual bits in an
integral primitive data type. Bitwise operators perform Boolean algebra

132 Thinking in Java wwuw.BruceEckel.com

mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_540
mailto:TIJ3@MindView.net?Subject=[TIJ3]Chap03_542

on the corresponding bits in the two arguments to produce the result.
Feedback

The bitwise operators come from C’s low-level orientation: you were often
manipulating hardware directly and had to set the bits in hardware
registers. Java was originally designed to be embedded in TV set-top
boxes, so this low-level orientation still made sense. However, you
probably won’t use the bitwise operators much. Feedback

The bitwise AND operator (&) produces a one in the output bit if both
input bits are one; otherwise it produces a zero. The bitwise OR operator
(]) produces a one in the output bit if either input bit is a one and
produces a zero only if both input bits are zero. The bitwise EXCLUSIVE
OR, or XOR (), produces a one in the output bit if one or the other input
bit is a one, but not both. The bitwise NOT (~, also called the ones
complement operator) is a unary operator; it takes only one argument.
(All other bitwise operators are binary operators.) Bitwise NOT produces
the opposite of the input bit—a one if the input bit is zero, a zero if the
input bit is one. Feedback

The bitwise operators and logical operators use the same characters, so it
is helpful to have a mnemonic device to help you remember the meanings:

since bits are “small,” there is only one character in the bitwise operators.
Feedback

Bitwise operators can be combined with the = sign to unite the operation
and assignment: &=, |= and ~= are all legitimate. (Since ~ is a unary
operator it cannot be combined with the = sign.) Feedback

The boolean type is treated as a one-bit value so it is somewhat different.
You can perform a bitwise AND, OR and XOR, but you can’t perform a
