STM32FLASH(1) User command STM32FLASH(1)

NAME
stm32flash - flashing utility for STM32 through UART or 12C

SYNOPSIS
stm32flash [-cfhjkouvCR] [-a bus_address] [-b baud_rate] [-m serial_mode] [-r filename] [-w file-
name] [-e num] [-n count] [-g address] [-s start page] [-S address[:length]] [-F
RX_length[:TX_length]] [-i GPIO_string] [tty_device | i2c_device]

DESCRIPTION
stm32flash reads or writes the flash memory of STM32.

It requires the STM32 to embed a bootloader compliant with ST application note AN3155 or AN4221.
stm32flash uses the serial port tty device or the i2c port i2c_device to interact with the bootloader of
STM32.

OPTIONS
—a bus_address
Specify address on bus for i2c_device. This option is mandatory for 12C interface.

—b baud_rate
Specify baud rate speed of tty device. Please notice that the ST bootloader can automatically de-
tect the baud rate, as explained in chapter 2 of AN3155. This option could be required together
with option —c or if following interaction with bootloader is expected. Default is 57600.

—m mode
Specify the format of UART data. mode is a three characters long string where each character
specifies, in this strict order, character size, parity and stop bits. The only values currently used
are 8el for standard STM32 bootloader and 8nl for standard STM32W bootloader. Default is
8el.

—r filename
Specify to read the STM32 flash and write its content in filename in raw binary format (see below
FORMAT CONVERSION).

-w filename
Specify to write the STM32 flash with the content of filename. File format can be either raw bi-
nary or intel hex (see below FORMAT CONVERSION). The file format is automatically de-
tected. To by-—pass format detection and force binary mode (e.g. to write an intel hex content in
STM32 flash), use —f option.

-u Specify to disable write—protection from STM32 flash. The STM32 will be reset after this opera-
tion.

-j Enable the flash read—protection.

-k Disable the flash read—protection.

-0 Erase only.

—e num Specify to erase num pages before writing the flash. Default is to erase the necessary pages based
on the file content size and/or parameters provided with the -S option, or the whole flash if this

stm32flash March 2022 1



STM32FLASH(1) User command STM32FLASH(1)

cannot be determined. With —e 0 the flash would not be erased.
-V Specify to verify flash content after write operation.

-n count
Specify to retry failed writes up to count times. Default is 10 times.

—g address
Specify address to start execution from (0 = flash start).

—s start_page
Specify flash page offset (0 = flash start).

—S address[:length]
Specify start address and optionally length for read/write/erase/crc operations.

—F RX_length[:TX_length]
Specify the maximum frame size for the current interface. Due to STM32 bootloader protocol,
host will never handle frames bigger than 256 byte in RX or 258 byte in TX. Due to current code,
lowest limit in RX is 20 byte (to read a complete reply of command GET). Minimum limit in TX
is 5 byte, required by protocol.

—f Force binary parser while reading file with —w.

-h Show help.

-C Specify to resume the existing UART connection and don’t send initial INIT sequence to detect
baud rate. Baud rate must be kept the same as the existing connection. This is useful if the reset
fails.

—i GPIO_string

Specify the GPIO sequences on the host to force STM32 to enter and exit bootloader mode. GPIO
can either be real GPIO connected from host to STM32 beside the UART connection, or UART’s
modem signals used as GPIO. (See below BOOTLOADER GPIO SEQUENCE for the format of
GPIQO_string and further explanation).

-C Specify to compute CRC on memory content. By default the CRC is computed on the whole flash
content. Use —S to provide different memory address range.

-R Specify to reset the device at exit. This option is ignored if either —g, —j, —k or —u is also speci-
fied.

BOOTLOADER GPIO SEQUENCE
This feature is currently available on Linux host only.

As explained in ST application note AN2606, after reset the STM32 will execute either the application pro-
gram in user flash or the bootloader, depending on the level applied at specific pins of STM32 during reset.

STM32 bootloader is automatically activated by configuring the pins BOOTO0="high" and BOOT1="low"

stm32flash March 2022 2



STM32FLASH(1) User command STM32FLASH(1)

and then by applying a reset. Application program in user flash is activated by configuring the pin
BOOTO0="low" (the level on BOOT1 is ignored) and then by applying a reset.

When GPIO from host computer are connected to either configuration and reset pins of STM32,
stm32flash can control the host GP1O to reset STM32 and to force execution of bootloader or execution of
application program.

The sequence of GPIO values to entry to and exit from bootloader mode is provided with command line op-
tion —i GPIO_string.

The format of GPIO_string is:
GPI10_string = [entry sequence][:[exit sequence]]
sequence = [[-]signal]&],[sequence]

In the above sequences, negative numbers correspond to GPIO at "low" level; numbers without sign corre-
spond to GPIO at "high" level. The value "n" can either be the GPIO number on the host system or the
string "rts", "dtr" or "brk". The strings "rts" and "dtr" drive the corresponding UART’s modem lines RTS
and DTR as GPIO. The string "brk" forces the UART to send a BREAK sequence on TX line; after
BREAK the UART is returned in normal "non—break™ mode. Note: the string "—brk" has no effect and is

ignored.

The ’;” delimiter adds 100 ms of delay between signal toggles, whereas the ’&’ delimiter adds no delay. An
empty signal, thus repeated ’,” delimiters, can be used to insert larger delays in multiples of 100 ms. E.g.
"rts,,,,—dtr" will set RTS, then wait 400 ms, then reset DTR. "rts&—dtr" will set RTS and reset DTR with-
out delay. You can use ’,” delimiters alone to simply add a delay between opening port and starting to flash.

Note that since version 0.6, an exit sequence will always be executed if specified, regardless of the -R op-
tion, to ensure the signals are reset. If -R is specified, but no exit sequence, a software-triggered reset will
be performed.

As an example, let’s suppose the following connection between host and STM32:
* host GP1O_3 connected to reset pin of STM32;
* host GP1O_4 connected to STM32 pin BOOTO;
* host GP1O_5 connected to STM32 pin BOOT1.

In this case, the sequence to enter in bootloader mode is: first put GP1O_4="high" and GPIO_5="low"; then
send reset pulse by GPIO_3="low" followed by GPIO_3="high". The corresponding string for
GPIQO_string is "4,-5,-3,3".

To exit from bootloader and run the application program, the sequence is: put GPIO_4="low"; then send re-
set pulse. The corresponding string for GPIO_string is "-4,-3,3".

The complete command line flag is "-i 4,-5,-3,3:-4,-3,3".

STM32W uses pad PA5 to select boot mode; if during reset PA5 is "low" then STM32W will enter in boot-
loader mode; if PA5 is "high" it will execute the program in flash.

As an example, suppose GPI10O_3 is connected to PA5 and GP1O_2 to STM32W'’s reset. The command:
stm32flash —i ’-3&-2,2:3&-2,,,2’ /dev/ttySO

provides:

* entry sequence: GPIO_3=low, GPIO_2=low, 100 ms delay, GPIO_2=high

* exit sequence: GPIO_3=high, GPIO_2=low, 300 ms delay, GPIO_2=high

Another example, introducing a delay after port opening. The command:
stm32flash -i’,,,,,:rts&—dtr,,,2’ /dev/ttyS00,
provides:

stm32flash March 2022 3



STM32FLASH(1) User command STM32FLASH(1)

* entry sequence: delay 500 ms
* exit sequence: RTS=high, DTR=low, 300 ms delay, GPIO_2=high

EXAMPLES
Get device information:
stm32flash /dev/ttySO

Write with verify and then start execution:
stm32flash —w filename —v —g 0x0 /dev/ttySO

Read flash to file:
stm32flash —r filename /dev/ttySO

Start execution:
stm32flash —g 0x0 /dev/ttySO

Specify:

* entry sequence: RTS=low, DTR=low, DTR=high

* exit sequence: RTS=high, DTR=low, DTR=high
stm32flash —i —rts,—dtr,dtr:rts,—dtr,dtr /dev/ttySO

FORMAT CONVERSION

Flash images provided by ST or created with ST tools are often in file format Motorola S—Record. Conver-
sion between raw binary, intel hex and Motorola S—Record can be done through software package SRecord.

AUTHORS

The original software package stm32flash is written by Geoffrey McRae and is since 2012 maintained by
Tormod Volden. See AUTHORS file in source code for more contributors.

Man page and extension to STM32W and 12C are written by Antonio Borneo.

Please report any bugs at the project homepage http://stm32flash.sourceforge.net .

SEE ALSO
srec_cat(1), srec_intel(5), srec_motorola(5).

The communication protocol used by ST bootloader is documented in following ST application notes, de-
pending on communication port. The current version of stm32flash only supports UART and 12C ports.
» AN3154: CAN protocol used in the STM32 bootloader

http://ww.st.com/web/en/resource/technical/document/application_note/CD00264321.pdf

» AN3155: USART protocol used in the STM32(TM) bootloader
http://www.st.com/web/en/resource/technical/document/application_note/CD00264342.pdf

* ANA4221: 12C protocol used in the STM32 bootloader
http://www.st.com/web/en/resource/technical/document/application_note/DM00072315.pdf

» ANA4286: SPI protocol used in the STM32 bootloader
http://www.st.com/web/en/resource/technical/document/application_note/DM00081379.pdf

stm32flash March 2022 4



STM32FLASH(1) User command STM32FLASH(1)

Boot mode selection for STM32 is documented in ST application note AN2606, available from the ST
website:
http://ww.st.com/web/en/resource/technical/document/application_note/CD00167594.pdf

LICENSE
stm32flash is distributed under GNU GENERAL PUBLIC LICENSE Version 2. Copy of the license is
available within the source code in the file gpl—2.0.txt.

stm32flash March 2022 5



