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Delay Line Effects

Delay lines are the fundamental building blocks of many of the most impor-
tant effects. They are rather easy to implement, and only small changes 
in how they are used allow many different audio effects to easily be con-
structed. In this chapter, we look at some common effects that are built using 
delay lines.

Delay

Delay is a simple effect with powerful applications. In the simplest case, add-
ing a single delayed copy of a sound to itself can enliven an instrument’s 
sound in a mix or, at longer delay times, allow a performer to play a duet 
with himself or herself. Many familiar effects, including chorus, flanging, 
vibrato, and reverb, are also built on delays.

Theory

Basic Delay

The basic delay plays back an audio signal after a specified delay time. 
Depending on the application, the delay time might range from a few milli-
seconds to several seconds or longer. Figure 2.1 shows a block diagram of the 
basic delay. It is common to mix the delayed output with the original input, 
thereby producing two copies of the sound. For this reason the basic delay is 
also sometimes known as an echo effect (though as we will see, the percep-
tion of echo also depends on the delay time).

We can express the output audio samples y[n] as a function of the input 
samples x[n], the delay time N (expressed in samples), and the gain g of the 
delayed signal:

	 y[n] = x[n] + gx[n – N]	 (2.1)

Delay is a linear, time-invariant effect. To show linearity, consider two sig-
nals x1[n] and x2[n]. Let y1[n] and y2[n] be the delayed output of each signal 
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individually. If we delay the sum of the signals, we find that the output is the 
sum of the individual delayed signals:
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Time invariance implies that shifting the input in time produces an identi-
cal shift in the output. Consider taking the delay of xd[n] = x[n – M] for some 
number of samples M:

	 y n x n M gx n M N y n Md[ ] [ ] [ ] [ ]= − + − − = − 	 (2.3)

Using the Z transform, we can also find the frequency response of the basic 
delay:
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Since the transfer function H(z) has no poles outside the unit circle, the basic 
delay must be stable in all cases; i.e., a bounded input will always produce a 
bounded output.

Delay with Feedback

The simple “feedforward” delay is limited in application, producing only a 
single echo. Most audio delay units also have a feedback control (sometimes 
called regeneration), which sends a scaled copy of the delay output back to 
the input, as shown in Figure 2.2. Feedback causes the sound to repeat con-
tinuously, and assuming a feedback gain less than 1, the echoes will become 
quieter each time. Though the echoes are theoretically repeated forever, they 
will eventually become so quiet as to be below the ambient noise in the sys-
tem and thus be inaudible.

To find the time domain difference equation for delay with feedback, it 
helps to consider the signal d[n] at the output of the delay line:

Delay +gx[n] y[n]

FIGURE 2.1
Diagram of the basic delay unit, or an echo device. The box marked “delay” is commonly 
known as a delay line.
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	 y n x n g d n d n x n N g d nFF FB[ ] [ ] [ ] where [ ] [ ] [= + = − + −NN]	 (2.5)

The form of d[n] is similar to the delayed output signal y[n – N], which lets us 
substitute and write y[n] directly in terms of x[n]:
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Taking the Z transform, we can find the frequency domain transfer function:
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Thus, the system has poles at the N complex roots of gFB. As with the basic 
delay, delay with feedback is linear and time invariant. The above trans-
fer function implies the effect will be stable whenever the poles are inside 
the unit circle, that is, when |gFB| < 1. This result aligns with intuition, in 
that only when the feedback gain is less than 1 will the echoes grow softer 
over time.

Other Delay Types

Slapback Delay

A slapback delay is identical to a basic delay without feedback and with a 
relatively short delay time, typically between 60 and 150 ms. The delayed 
copy is perceived as a separate sound that appears immediately after the 
original sound. A longer delay, where there is a noticeable gap between the 
original and delayed sounds, is often referred to as an echo.

DelayN gFF

gFB

x[n] y[n]
++

FIGURE 2.2
Diagram of the basic delay unit with feedback.
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Multitap Delay

In a standard delay with or without feedback, the time between copies is 
always the same, since the output signal is taken after the signal reaches the 
end of the delay line. Multitap delay provides more flexibility by taking sev-
eral additional outputs in the middle of the delay line, where the signal has 
been delayed only part of the total time. This process is known as “tapping” 
the delay line, following the analogy of adding taps along a water pipe to get 
water at various locations. Multitap delay is commonly labeled according 
to the number of taps; for example, a four-tap delay would have four total 
outputs at various points on the delay line. The delay between each tap is 
typically not the same, so multitap delays allow more complex patterns to 
be created that can add interesting rhythmic qualities to an instrument. A 
diagram of multitap delay is shown in Figure 2.3.

The multitap delay is a more general case of the basic delay design. The 
multitap delay can be further generalized by allowing feedback from the tap 
outputs to the beginning of the delay line as well. In this case, care must be 
taken with the feedback gains to avoid creating an unstable system.

Ping-Pong Delay

Ping-pong delay is a multichannel delay-based effect that produces a bounc-
ing sound from one channel to the other, hence the name. It is implemented 
as a delay with feedback with at least two distinct delay lines (Figure 2.4). 
Each delay line may be driven by a separate input, or only one input can 
be used. The output of each delay line, rather than feeding back to itself, 
attaches to the input of the opposite delay line. In its two-channel configura-
tion, ping-pong delay produces a sound that bounces between left and right 
channels in a stereo track.

+++

x[n]

y[n]

gFB

z–N1 z–N2 z–N3 z–N4

FIGURE 2.3
Flow diagram of a three-tap delay. If the last delay value is zero, and only the third tap is used, 
the system is equivalent to the basic delay.
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Implementation

Basic Delay

Before the days of digital audio, delays were one of the more cumbersome 
effects to implement, relying on physical audiotape or analog “bucket bri-
gade device” integrated circuits to store and retrieve audio signals. In the 
digital realm, delay is one of the simplest effects. Audio samples are stored in 
a preallocated memory buffer as they arrive, while previously stored samples 
are read from the buffer once the delay time has elapsed. In other words, in 
a simple delay, each sampling period includes one read operation (retrieving 
the delayed signal) and one write operation (storing the current signal). 
When the end of the memory buffer is reached, the system should loop 
around to the beginning of the buffer. In signal processing, this process is 
known as a circular buffer, and it is quite efficient. Programming consider-
ations for circular buffers are discussed in Chapter 13.

Variations

Delay with feedback is implemented identically to a simple delay, but rather 
than storing the raw input signal in the memory buffer, the sum of the input 
signal and the delayed, scaled output is stored (x[n] + gFBx[n – N] in Figure 2.2). 
Ping-pong delay uses two independent memory buffers and, hence, two read 
operations and two write operations for each sample.

Multitap delay uses a single memory buffer with multiple read pointers. At 
each sample, the current input is written into a slot in the buffer (the write 
pointer), but samples are read back from multiple locations in the buffer 

X1(z)

X2(z)

z–N c1 +
Y1(z)

a1 +

b1

b2

Y2(z)
+ c2a2 z–N +

FIGURE 2.4
Flow diagram of a ping-pong delay unit.
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(the read pointers). The spacing in memory between the pointers deter-
mines the difference in their delay times. This process is further discussed 
in Chapters 10 and 13.

Delay Line Interpolation

Digital delays are implemented using a memory buffer of discrete audio 
samples. To change the delay time, we change the distance in the buffer 
between where samples are written and where they are read back. However, 
many effects, including the flanger and chorus, require a delay that changes 
over time. To achieve a smooth variation in delay, rounding to the nearest-
integer number of samples is usually not good enough.

Delay becomes more complex when a noninteger number of samples 
is required. Consider a simple delay with a length of 0.5 samples. From 
Equation (2.1) we have

	 y[n] = x[n] + gx[n − 0.5] ⇒ y[1] = x[1] + gx[0.5]	 (2.8)

However, x[n] is defined only for integer n, so x[0.5] does not exist. Strictly 
speaking, it is not correct to think of x[0.5] as “halfway between” x[0] and 
x[1]. However we might ask what the result would be if x[n] were converted 
from discrete to continuous time, shifted half a sampling period, then recon-
verted to discrete time. An excellent discussion of the underlying mathemat-
ics of this process, which is based on sinc functions (sin(n)/n), can be found 
in [3]. Interestingly, exact reconstruction of fractional sample values requires 
knowledge of the entire signal (i.e., x[n] from n = –∞ to ∞), which is clearly 
impossible in a real-time audio context.

In practice, fractional delays in audio are implemented using interpola-
tion or allpass filters [7]. Interpolation involves using a weighted combina-
tion of surrounding samples to approximate the fractional sample value. 
Interpolation involves estimating a value of a continuous function, given 
discrete points, and can be used to estimate values between points on a delay 
line. Polynomial interpolation is where the function is estimated to be an 
Nth-order polynomial, x(t) = cNtN + cN–1tN–1 + … c1t1 + c0.

If values out of the delay line closest to the required point are read, this is 
zeroth-order, or nearest-neighbor, interpolation. It is probably the least com-
putationally expensive approach. However, the output now has abrupt jumps 
between values. The quality of this approach is quite poor. Clicking in the 
output may be heard as the delay length changes, also known as zipper noise.

Linear interpolation, or first-order interpolation, is implemented by con-
necting two known samples by a straight line and then reading the desired 
value from that line. This is given in the following equation:

	 x(t) = (n + 1 − t)x[n] + (t − n)x[n + 1],  n ≤ t < n + 1	 (2.9)
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Linear interpolation is simple to calculate and produces much better 
results than nearest-neighbor interpolation. However, it is still only a rough 
approximation to the ideal continuous time case, and it can introduce noise 
and aliasing into the signal. In many cases, audibly better quality will be 
obtained with a more computationally complex interpolation method.

One such method is second-order polynomial interpolation. Consider 
three successive samples, x[n – 1], x[n], and x[n + 1]. We would typically use 
these samples if we are trying to interpolate a value of x near x[n]. Let’s define 
a new function, y(τ) = x(t), where τ = t – n. Thus, x[n – 1], x[n], and x[n + 1] 
become y[–1], y[0], and y[1]. Assuming that these points are on a second-order 
polynomial, we have the following three equations:
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where c0, c1, and c2 are the coefficients of some second-order polynomial. 
This can be solved to give
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So our interpolated values are
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Cubic interpolation requires more computation, but it can give better 
results with lower added noise resulting from inaccuracies than the ideal 
sinc-function case. There are many forms of cubic interpolation; a detailed 
discussion is available in [8]. The simplest case uses the four samples sur-
rounding the interpolated location:
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where the coefficients are given by
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Code Example

The following C++ code fragment, adapted from the code that accompanies 
this book, shows the implementation of a basic delay with feedback, and 
without interpolation.

// Variables whose values are set externally:
int numSamples;     // How many audio samples to process
float *channelData; // Array of samples, length numSamples
float *delayData;   // Our own circular buffer of samples
int delayBufLength; // Length of our delay buffer in samples
int dpr, dpw;       // Read/write pointers into delay buffer

// User-adjustable effect parameters:
float dryMix_;      // Level of the dry (undelayed) signal
float wetMix_;      // Level of the wet (delayed) signal
float feedback_;    // Feedback level (0 if no feedback)

for (int i = 0; i < numSamples; ++i)
{
    const float in = channelData[i];
    float out = 0.0;

    // The output is the input plus the contents of the 
    // delay buffer (weighted by the mix levels).

    out = (dryMix_ * in + wetMix_ * delayData[dpr]);

    // Store the current information in the delay buffer. 
    // delayData[dpr] is the delay sample we just read, i.e. 
    // what came out of the buffer. delayData[dpw] is what 
    // we write to the buffer, i.e. what goes in

    delayData[dpw] = in + (delayData[dpr] * feedback_);

    if (++dpr >= delayBufLength)
        dpr = 0;
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    if (++dpw >= delayBufLength)
        dpw = 0;

    // Store output sample in buffer, replacing the input
    channelData[i] = out;
}

This example assumes that a single channel of input audio data is present 
in the channelData array. In a real-time effect, channelData will hold 
only the most recent block of audio samples, rather than the entire input sig-
nal. To implement the delay, we write each input sample into delayData at a 
position indicated by the write pointer dpw, while reading a delayed sample 
previously written into the buffer using read pointer dpr.
delayData is a circular buffer: after each sample is processed, dpr and 

dpw are incremented, and when either of them reaches the end of the buf-
fer, it is reset back to position 0. Notice that there is no parameter for the 
delay length in this code example. It is the difference between the read and 
write pointers dpr and dpw that determines the delay length. These values 
are initialized elsewhere in the effect. More details and a more extensive 
code example can be found in Chapter 13.

Applications

Delays are a very common effect in music production. Even a single basic 
delay, without feedback, has many uses. A common use is to combine an 
instrument’s sound with a short echo (for example, around 50–100 ms) to 
create a doubling effect. This can create a wider, more lively sound than 
the original single version. If the original and delayed copies are panned 
differently in a stereo mix, short delays can also help make the mix sound 
“bigger.” More complex arrangements including feedback and multiple taps 
can start to simulate the sound of a reverb unit, though reverb (covered in 
Chapter 11) typically creates more complex patterns than can be simulated 
with simple delays.

Longer delays become less subtle once the original and delayed copies are 
easily perceived as two separate acoustic events. One common trick is to syn-
chronize the delay time with the tempo of the music, such that the delayed 
copies appear in rhythm with the track [9]. If the delay time is especially 
long, for example, equal to one or more bars of music, a musician can play 
over himself or herself and develop elaborate harmonies and textures.

Sampler and looper pedals are fundamentally based on the delay, with 
additional features to be able to define the start and end of an audio segment, 
which then can loop continuously. Other features are possible, including the 
ability to mix additional sounds onto a loop that was previously recorded, 
to play a loop backwards, or to have multiple simultaneous loops. Some 
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standard delay pedals will include basic looper capability, though often lim-
ited to a single loop of a few seconds at most.

Vibrato Simulation

Vibrato is defined as a small, quasi-periodic variation in the pitch of a tone. 
Traditionally, vibrato is not an audio effect but rather a technique used by 
singers and instrumentalists. On the violin, for example, vibrato is pro-
duced by rhythmically rocking the finger back and forth on the fingerboard, 
slightly changing the length of the string. However, vibrato can be added to 
any audio signal through the use of modulated delay lines.

Vibrato is characterized by its frequency (how often the pitch changes) and 
width (total amount of pitch variation). On acoustic instruments, especially 
wind instruments, vibrato is often accompanied by some degree of ampli-
tude modulation or tremolo (Chapter 5), with the pitch and amplitude of the 
signal changing in synchrony.

FRIPPERTRONICS AND CRAFTY GUITARISTS

Robert Fripp (King Crimson, The League of Crafty Guitarists, League 
of Gentlemen, solo artist…) is known as one of the greatest and most 
influential guitarists of all time. Evolving out of his work with Brian 
Eno in 1973, he devised a tape looping technique to layer his guitar 
sounds in real-time. It used two reel-to-reel tape recorders. The tape 
traveled from the supply reel of one recorder to the take-up reel of 
the second one. Then the tape from the second machine is fed back to 
the first one, and the delay can be changed by adjusting the distance 
between the two machines. Furthermore, it also provided a recording 
of the complete overlayed recording, and could be used in live perfor-
mance. Fripp’s girlfriend later named this technique ‘Frippertronics,’ 
though we would describe it as a time varying delay with feedback. 
Also among Robert Fripp’s more unusual contributions are many of the 
sounds for the Windows Vista operating system.

Many other famous guitarists are also known for music technology 
innovations. For instance, Tom Scholz of the band Boston designed 
a wide range of novel guitar effects devices, including the Rockman 
amplifier. But one of the most famous guitarists is also one of the peo-
ple who most influenced music technology, Les Paul. His solid body 
electric guitar designs were some of the first and most popular, and he 
is credited with many innovations in multitrack recording.
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Theory

The vibrato effect works by changing the playback speed of the sampled audio. 
The effect of playback speed is familiar to many listeners: playing a sound 
faster raises its pitch, and playing it slower lowers the pitch. To add a vibrato, 
then, the playback speed needs to be periodically varied to be faster or slower 
than normal.

Implementation of the vibrato effect is based on a modulated delay line, a 
delay line whose delay length changes over time under the control of a low-
frequency oscillator (LFO), as shown in Figure 2.5. Unlike other delay effects, 
the input signal x[n] is not mixed into the output.

Delay alone does not introduce a pitch shift. Suppose the length M[n] of 
the delay line does not change. Then at every sampling period n, exactly 
one sample x[n] goes in and one sample y[n – M] comes out. The sound will 
be delayed but otherwise identical to the original. But now suppose that the 
length M[n] decreases each sample by an amount Δm:

	 M n M m n[ ] ( )max= − 	 (2.15)

Examining the output of the delay line, we can see that each new input sam-
ple n moves the output by (1 + Δm) samples:

	 y n x n M m n x m n M[ ] ( ) ( )max max= − +[ ] = + −[ ]1 	 (2.16)

In other words, the playback rate from the buffer is (1 + Δm) times the input 
rate. Correspondingly, the frequencies in the input signal x[n] will all be 
scaled upwards by a factor of (1 + Δm). For similar reasons, if the length of 
the delay line increased each sample (Δm < 0), the frequencies of the output 
signal would all be scaled down compared to the original.

x[n] y[n]
Delay M[N]

LFO

FIGURE 2.5
Modulated delay and pitch shift.
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Notice that the pitch shift is sensitive only to the change in delay Δm, not its 
initial value Mmax. We can generalize to write that pitch shift is dependent on 
the derivative (or, in discrete time, first difference) of delay length, with increas-
ing length producing lower pitch:

	 f n
f
f

n M n M nratio
out

in
[ ] [ ] [ ] [ ]= = − − −( )1 1 	 (2.17)

To create a vibrato effect, then, the delay is periodically lengthened 
and shortened.

Interpolation

Strictly speaking, Equation (2.16) is defined only for integer samples of x, i.e., 
when (1 + Δm)n – Mmax is an integer. In general, this is not always the case for 
a modulated delay line where delay lengths change gradually from sample 
to sample, so interpolation must be used to approximate noninteger values 
of x. See the earlier section on fractional delay for a more detailed discussion 
of interpolation and its implementation.

Implementation

Though Equation (2.17) suggests that arbitrary pitch shifts are possible by 
choosing the rate Δm at which the delay length varies, real-time audio effects 
are limited by two practical considerations. First, real-time effects must be 
causal, which implies that the delay length M[n] must be nonnegative. If we 
want to increase the pitch of a sound, this means that for any finite initial 
delay Mmax, M[n] will eventually reach 0, at which point it will no longer be 
possible to maintain the pitch shift. The second consideration is that com-
puter systems have finite amounts of memory. To decrease the pitch of a 
sound, M[n] must steadily increase, which requires an ever greater memory 
buffer to hold the delayed samples. Because the output is being played more 
slowly than the input, eventually it will be impossible to hold all the inter-
vening audio in memory.

To satisfy these two considerations, the average change in delay length over 
time must be 0. In a vibrato effect, the delay length varies periodically around 
a fixed central value, producing periodic pitch modulation, but a sustained 
increase or decrease in pitch is not possible. In Chapter 8, we will examine a 
technique for real-time pitch shifting using the phase vocoder.

Low-Frequency Oscillator

The delay effect described earlier can be characterized as a linear, time-
invariant filter. But many of the audio effects that we will encounter are 
not time invariant. That is, the effect acts like a filter, but now the output 
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as a function of input depends on the time or, in discrete form, the sam-
ple number. This is most often accomplished by driving the effect (making 
some parameters explicitly a function of time) with a low-frequency oscilla-
tor (LFO). This is the case for vibrato and the other delay line-based effects 
described in the following sections.

LFOs do not have a formal definition, but they may be considered to be 
any periodic signals with a frequency below 20 Hz. They are used to vary 
delay lines or as modulating signals in many synthesizers, and they will be 
used in many of the effects featured later in the book. Like their audio fre-
quency counterparts, LFOs typically use periodic waveforms such as sine, 
triangle, square, and sawtooth waves. However, any type of waveform is 
possible, including user-defined waveforms read from a wave table.

Figure 2.6 depicts three of the most commonly used waveforms. Different 
LFO waveforms are preferred for different effects. In the vibrato effect, the 
delay length is typically controlled by a sinusoidal LFO:

	 M n M W nf favg s[ ] sin= + ( )2π 	 (2.18)

where Mavg is the average delay (for real-time effects, it is chosen so that M[n] 
is always nonnegative), W is the width of the delay modulation, f is the LFO 
frequency in Hz, and fs is the sample rate. The rate of change from one sam-
ple to the next can be approximated by the continuous time derivative:

Sine LFO Waveform
1

0

–1

1

0

–1

1

0

–1

Triangle LFO Waveform

Exponential LFO Waveform

FIGURE 2.6
Three commonly used low-frequency oscillator (LFO) waveforms.
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M n M n W nf f n f fs s[ ] [ ] sin sin ( )− − = ( ) − −( )1 2 2 1π π

≈ ( )2 2π πfW nf fscos
	 (2.19)

We can then find the frequency shift for the vibrato effect:

	 f n M n M n fW nf fratio s[ ] [ ] [ ] cos= − − −( ) ≈ − ( )1 1 1 2 2π π 	 (2.20)

Notice that in the implementation of the LFO, W indicates the amount that 
the delay length changes, not the amount of pitch shift. Equation (2.20) shows 
that pitch shift depends on both W and f, such that for the same amount of 
delay modulation, a faster LFO will produce more pitch shift. As Figure 2.7 
demonstrates, this is an expected result, since increasing the frequency of a 
sine wave while maintaining its amplitude will result in a greater derivative.

Given the desired amount of maximum pitch shift and an LFO frequency, 
we can calculate the approximate required amount of delay variation:

	 W f n fratio= −( )[ ] 1 2π 	 (2.21)
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FIGURE 2.7
Vibrato in operation. The LFO waveform on top and the pitch shift on bottom, for LFO fre-
quency 2 Hz (left) and 4 Hz (right).
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From this, we can also find the average delay Mavg ≥ W needed to keep the 
effect causal. In all but the most extreme cases, Mavg will be small enough that 
no delay will be perceptible at the output of the vibrato effect.

Parameters

The vibrato effect is completely characterized by LFO frequency, LFO waveform, 
and vibrato (pitch shift) width. The pitch shift parameter is used to calculate the 
amount of delay modulation, which is what ultimately produces the vibrato 
effect. A typical violin vibrato has a frequency on the order of 6 Hz, with fre-
quency variation of around 1% (i.e., approximately 0.99 to 1.01 in frequency 
ratio) [1]. With a sinusoidal LFO, these settings would produce a delay varia-
tion W of 0.265 ms in either direction. By way of comparison, two notes a 
semitone apart differ in frequency by 2 1 05912 ⊕ . , or 5.9%.

Sinusoidal waveforms are best for emulating normal instrumental 
vibrato, but other waveforms can be used for special effects. For example, 
a triangle waveform (Figure 2.8a) has only two slopes (rising and falling), 
and accordingly, the pitch will jump back and forth between two fixed 
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Triangular (a) and sawtooth LFOs (b), with corresponding pitch shift (c and d).
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values (Figure  2.8c). A rising sawtooth wave (Figure  2.8b) approximates a 
pitch-lowering effect since the derivative of delay length is usually positive. 
However, the periodic discontinuities (Figure 2.8d) in the sawtooth wave-
form produce artifacts that degrade the quality of the result, so this tech-
nique is not normally used for pitch shifting.

Code Example

The following C++ code fragment, adapted from the code that accompanies 
this book, implements a vibrato with sinusoidal LFO and linear interpolation.

// Variables whose values are set externally:
int numSamples;     // How many audio samples to process
float *channelData; // Array of samples, length numSamples
float *delayData;   // Our own circular buffer of samples
int delayBufLength; // Length of our delay buffer in samples
int dpw;            // Write pointer into the delay buffer
float ph;           // Current LFO phase, always between 0-1
float inverseSampleRate; // 1/f_s, where f_s = sample rate

// User-adjustable effect parameters:
float frequency_;   // Frequency of the LFO
float sweepWidth_;  // Width of the LFO in samples

for (int i = 0; i < numSamples; ++i)
{
    const float in = channelData[i];
    float interpolatedSample = 0.0;

    // Recalculate the read pointer position with respect to 
    // the write pointer. A more efficient implementation 
    // might increment the read pointer based on the 
    // derivative of the LFO without running the whole 
    // equation again, but this makes the operation clearer.
    float currentDelay = sweepWidth_ * (0.5f + 
                              0.5f * sinf(2.0 * M_PI * ph));

    // Subtract 3 samples to the delay pointer to make sure 
    // we have enough previous samples to interpolate with
    float dpr = fmodf((float)dpw 
                   - (float)(currentDelay * getSampleRate())
                   + (float)delayBufLength - 3.0,
                   (float)delayBufLength);

    // Use linear interpolation to read a fractional index 
    // into the buffer. Find the fraction by which the read 
    // pointer sits between two samples and use this to 
    // adjust weights of the samples
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    float fraction = dpr - floorf(dpr);
    int previousSample = (int)floorf(dpr);
    int nextSample = (previousSample + 1) % delayBufLength;
    interpolatedSample = fraction*delayData[nextSample]
        + (1.0f-fraction)*delayData[previousSample];

    // Store the current information in the delay buffer.
    delayData[dpw] = in;

    // Increment the write pointer at a constant rate. The 
    // read pointer will move at different rates depending 
    // on the settings of the LFO, the delay and the
    // sweep width.
    if (++dpw >= delayBufLength)
        dpw = 0;

    // Store the output sample in the buffer, replacing the 
    // input. In the vibrato effect, the delayed sample is 
    // the only component of the output (no mixing with the 
    // dry signal)
    channelData[i] = interpolatedSample;

    // Update the LFO phase, keeping it in the range 0-1
    ph += frequency_*inverseSampleRate;
    if(ph >= 1.0)
        ph -= 1.0;
}

The code exhibits many similarities to the basic delay in the previous sec-
tion. One notable difference is that the read pointer dpr is now fractional, 
taking noninteger values. Accordingly, dpr cannot be directly used to read 
the circular buffer delayData, since arrays in C++ can be accessed only at 
integer indices. In this example, the variable fraction holds the noninte-
ger component of the read pointer dpr; it is used to calculate a weighted 
average between the two nearest samples in the circular buffer (previous-
Sample and nextSample). Notice how the index of the sample following 
dpr is calculated:

int nextSample = (previousSample + 1)% delayBufLength;

The % sign is a modulo operator. This means that if the expression 
(previousSample + 1) exceeds delayBufLength, it will be wrapped 
around to the beginning of the buffer. The use of modulo arithmetic is 
needed to implement a circular buffer.

For the vibrato effect, no feedback or mixing with the original signal is 
used, so many of the parameters in the basic delay example are not found 
here. In the complete code example that accompanies this book, a choice of 
LFO waveforms and interpolation types is offered.
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Applications

Vibrato, when used by vocalists or instrumentalists, can add a sense of 
warmth and life to a musical line. The width and frequency of vibrato and 
their evolution over time are important expressive decisions for many per-
formers. Vibrato can also help an instrument or voice stand out from an 
ensemble. A single musical note will contain energy at discrete, harmoni-
cally related frequencies, but by varying the pitch back and forth, a single 
note can use more of the frequency spectrum.

Vibrato is sometimes used to cover slight errors in pitch, as it is easier to 
perceive a steady pitched sound as being out of tune than one containing 
vibrato. However, the use of vibrato to cover pitch errors is generally consid-
ered poor musical practice.

The vibrato audio effect is not as flexible as a performer’s natural vibrato, 
since the LFO operates at a constant rate and width regardless of the musi-
cal material. Also, a simple vibrato implementation does not synchronize 
with the beginnings and endings of individual notes as a performer would. 
More advanced implementations do, though, such as can be found in 
some synthesizers.

Though it is possible to imagine a vibrato effect with a pedal or other con-
trol to give the user more flexibility over the LFO, this is rarely seen in prac-
tice. Nonetheless, even a fixed-frequency vibrato can add warmth and body 
to the sound of an instrument, especially when used with reverberation.

Flanging

Flanging is a delay-based effect originally developed using analog tape 
machines 50 years ago (see [1] and references therein). It refers to the flange 
or outer rim of the open-reel tape recorders in common use in studios at the 
time. To create the flanging effect, two tape machines are set up to play the 
same tape at the same time. Their outputs are mixed together equally, as 
shown in Figure 2.9.

Flange

y [n]

FIGURE 2.9
Two tape machines configured to produce a flanging effect.
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If the two machines played perfectly in unison, the result would simply be 
a stronger version of the same signal. Instead, the operator lightly touches 
the flange of one of the tape machines, slowing it down and thereby lowering 
the pitch. This action also causes the tape machine to fall slightly behind its 
counterpart, creating a delay between them. The operator then releases the 
flange and repeats the process on the other machine, which causes the delay 
to gradually disappear and then grow in the opposite direction. The process 
is repeated periodically, alternately pressing each flange.

KEN’S FLANGER

Flanging is an unusual name for an audio effect, and it is certainly 
not a common word in music or signal processing. The flange refers 
to a rim or edge, especially on a tape reel. Producers were known to 
manipulate the flange of a tape reel to achieve nice effects on many 
early tape recordings. One of the earliest known examples of producing 
a sound similar to the modern flanger is “The Big Hurt” by Tony Fisher, 
recorded in 1959. 

But the origin of the name of the audio effect is an unusual one, and 
has been well documented by Beatles’ historians Bill Biersach and 
Mark Lewisohn [10].

In 1966, the Beatles recorded Revolver at Abbey Road. The studio tech-
nician Ken Townsend later said that “they would relate what sounds 
they wanted and we then had to go away and come back with a solu-
tion … they often liked to double-track their vocals, but it’s quite a labori-
ous process and they soon got fed up with it. So, after one particularly 
trying night-time session doing just that, I was driving home and sud-
denly had an idea.”

What Townsend devised was not the modern flanging, but the 
closely related chorus effect, or artificial double tracking (ADT). But it 
is implemented using the same approach, slowing down and speeding 
up a tape machine. The seemingly random variations in speed (and 
hence also pitch) mimic the effect of a singer trying to harmonize with 
the original.

John Lennon loved the effect, and asked George Martin, the Beatles’ 
producer, to explain it. As Martin recalled, “I knew he’d never under-
stand it, so I said, ‘Now listen, it’s very simple. We take the original 
image and split it through a double vibrocated sploshing flange with 
double negative feedback … .’ He said, ‘You’re pulling my leg, aren’t 
you?’ I replied, ‘Well, let’s flange it again and see.’ From that moment 
on, whenever he wanted it he’d ask for his voice to be ‘flanged,’ or call 
out for ‘Ken’s flanger’’’ [11].
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If too much delay accumulates between the machines, the mixed output 
will no longer be heard as a single signal but as two distinct copies. For this 
reason, the delay must be kept well below the threshold of echo perception 
(see Chapter 9), i.e., only a few milliseconds in each direction, so the result is 
heard as a single sound rather than two separate sounds.

The flanging effect has been described as a kind of “whoosh” that passes 
through the sound. The effect has also been compared to the sound of a jet 
passing overhead, in that the direct signal and the reflection from the ground 
arrive at a varying relative delay. And when the delay is modulated rapidly, 
an audible Doppler shift may be heard [1] (see Chapter 10).

Theory

Principle of Operation

The flanger is based on the principle of constructive and destructive inter-
ference. If a sine wave signal is delayed and then added to the original, the 
sum of the two signals will look quite different depending on the length of 
the delay. At one extreme, when the two signals perfectly align in phase, the 
output signal will be double the magnitude of the input. This is constructive 
interference. At the other extreme, when the delay causes the two signals to 
be perfectly out of phase, they cancel each other out: an increase in one sig-
nal is precisely balanced by a decrease in the other, so they will sum to zero. 
This is destructive interference.

Typical audio signals contain energy at a large number of frequencies. For 
any given delay value, some frequencies will add destructively and cancel 
out (notches in the frequency response) and others will add constructively 
(peaks). Peaks and notches by themselves do not make a flanger: it is the 
motion of these notches in the frequency spectrum that produces the char-
acteristic flanging sound. As the following sections show, the motion of the 
peaks and notches is achieved by continuously changing the amount of 
delay (Figure 2.10).

Basic Flanger

A block diagram of a basic flanger is shown in Figure 2.11. Its operation is 
closely related to the basic delay discussed previously, with the key differ-
ence that the amount of delay varies over time. It is also closely related to 
the vibrato that was depicted in Figure 2.5. The input/output relation for the 
flanger can be expressed in the time domain as

	 y n x n gx n M n[ ] [ ] [ ]= + − 	 (2.22)

The delay length M[n] varies under the control of a separate low-frequency 
oscillator, discussed in the following sections. This structure is known as a 
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feedforward comb filter, since the delayed signals feed forward from the input 
to the output (with no feedback). To see why this difference equation results 
in a comb filter, we should consider its Z transform and transfer function:

	 Y z X z gz X z H z
Y z
X z

gzM n M( ) ( ) ( ) ( ) ( )
( )

[ ] [= + = = +− −1 nn]	 (2.23)

To find the frequency response of the flanger for each frequency ω, we sub-
stitute ejω for z and find the magnitude of the transfer function:
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FIGURE 2.10
The magnitude response of a flanger with depth set to 1 and delay times set to one, two, three, 
and four samples.

+Delay M[n] 
x[n] y[n]

g

FIGURE 2.11
Block diagram of a basic flanger without feedback. The delay length M[n] changes over time.
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H e ge g M n jg M nj j M n( ) cos [ ] sin [ ][ ]ω ω ω ω= + = + ( ) −−1 1 (( )

= +( ) +( ) = +−H e ge ge gj j M n j M n( ) cos[ ] [ ]ω ω ω1 1 1 2 ωωM n g[ ]( ) + 2
	 (2.24)

Notice that the frequency response is periodic: for g > 0, we have M peaks 
in the frequency response, located at the frequencies when the cosine term 
reaches its maximum value:

	 ω πp p M p M= = … −2 0 1 2 1/ where , , , , 	 (2.25)

Likewise, for g > 0, there are M notches (minima) in the frequency response. 
These are located where the cosine term reaches its minimum value:

	 ω πn n M n M= + = … −( ) where , , , ,2 1 0 1 2 1	 (2.26)

The pattern of peaks and notches is shown in Figure 2.12. The equations 
show that a larger delay M[n] produces more notches and a lower frequency 
for the first notch. As M[n] varies, the notches sweep up and down through 
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FIGURE 2.12
The frequency response of a simple flanger with a six-sample delay and depth set to 1. The 
locations of the six peaks and six notches over the whole frequency range from 0 to 2π are 
shown.
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the frequency range. The notches are regularly spaced at intervals of fs/M Hz 
where fs is the sampling rate. Their pictorial resemblance in Figure 2.12 to 
the teeth of a comb is what gives this structure the term comb filter. Chapter 4 
will examine phasing, an effect that produces similar moving notches in the 
frequency response that are not regularly spaced.

The depth of the notches depends strongly on the gain g of the delayed 
signal. When g = 0, the frequency response is perfectly flat, as we would 
expect since g = 0 corresponds to no delayed signal. When g is between 0 and 
1 (or greater than 1), notches appear in the spectrum, but their depth is finite 
and depends on the value of g. When g = 1, the notches are infinitely deep, as 
the frequency response exactly equals 0 at the notch frequencies wn. For this 
reason, g = 1 produces the most pronounced flanging effect.

Low-Frequency Oscillator

The characteristic sound of the flanger comes from the motion of regularly 
spaced notches in the frequency response. For this reason it is critical that the 
length of the delay M[n] changes over time. Typically, M[n] is varied using 
a low-frequency oscillator (LFO). The LFO can be one of several waveforms, 
including sine, triangle, or sawtooth, with sine being the most common 
choice. Typical delay lengths for the flanger range from 1 to 10 ms, corre-
sponding to notch intervals ranging from 1000 Hz down to 100 Hz. Further 
details on LFO parameters are discussed in the “Parameters” section below.

Flanger with Feedback

Just as feedback could be added to the basic delay, some flangers incorporate 
a feedback path that routes the scaled output of the delay line back to its 
input, as shown in Figure 2.13. Feedback on the flanger is also sometimes 
referred to as regeneration. As with the delay effect with feedback, using 
feedback in the flanger will result in many successive copies of the input 
signal spaced several milliseconds apart and gradually decaying over time 
(Figure  2.14). However, since the delay times in the flanger (typically less 
than 20 ms) are below the threshold of echo perception (roughly 50–70 ms), 
these copies are not heard as independent sounds but as coloration or filter-
ing of the input sound.

gFB

gFF
x[n] y[n]

Delay M(n)

LFO

+ +

FIGURE 2.13
Flanger with feedback. Delay in all flangers is controlled by a low-frequency oscillator (LFO).
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FIGURE 2.14
Impulse responses for a comb filter (i.e., delay effect) with a five-sample delay. On top, g = 0.8 
and no feedback. On bottom, gFF = 0.8 and gFB = 0.5.
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The difference equation and frequency response for a flanger with feed-
back can be derived similarly to the delay with feedback:
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We can see that when the feedback gain gFB = 0, these terms exactly match 
the basic flanger without feedback, as expected. In addition to the zeros of 
H(z), which are similarly located to the flanger without feedback, the transfer 
function has poles at the complex roots of gFB. If gFB < 1, these will remain 
inside the unit circle and the system will be stable. This is an intuitive result: 
feedback gains less than 1 mean that the delayed copies of the sound will 
gradually decay, where a gain of 1 or more means they will grow (or at least 
persist with significant amplitude) indefinitely.

The effect of feedback is to make the peaks and notches sharper and more 
pronounced. Its sound is often described as intense or metallic, and as the 
feedback gain approaches 1, the pitch fs/M resulting from the delay line can 
overwhelm the rest of the sound.

Stereo Flanging

A stereo flanger is constructed of two monophonic flangers that are identi-
cal in all settings except the phase of the low-frequency oscillator. Typically, 
the two oscillators are in quadrature phase, where one leads the other by 90°. 
In a stereo flanger, the same signal can be used as the input to both chan-
nels, or separate signals can be used for each input. The outputs are typically 
panned fully to the left and right of a stereo mix.

Properties

Because the flanger (with or without feedback) is composed entirely of delays 
and multiplication, it is a linear effect. However, because the properties of the 
delay line vary over time independently of the input signal, it is time variant, 
unlike the standard delay: shifting the input signal in time by N samples 
does not necessarily produce the identical output shifted by N samples, since 
the delay line length may have changed. The basic flanger is always stable, 
where the flanger with feedback is stable if and only if the feedback gain 
gFB < 1.

Common Parameters

The typical flanger effect contains several controls that the musician can adjust.
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Depth (or Mix)

The depth control affects the amount of delayed signal that is mixed in with 
the original. g = 0 produces no effect, whereas g = 1 produces the most pro-
nounced flanging effect. Higher depth settings (g > 1) produce a louder 
overall sound due to scaling up the delayed signal, but the flanging effect 
becomes less pronounced: only when the original and delayed copies exactly 
match in amplitude can perfect cancelation of the notch frequencies occur.

Delay and Sweep Width

The term delay is potentially misleading in the flanger since the length of the 
delay line varies over time under the control of a low-frequency oscillator. 
The delay control parameter on a flanger affects the minimum amount of 
delay M[n]. The value of the LFO is added to produce larger time-varying 
values. Sweep width controls the total amplitude of the low-frequency oscilla-
tor, such that the maximum delay time is given by the sum of the delay and 
sweep width controls (Figure 2.15).

As the delay is decreased, the first notch becomes higher in frequency. The 
delay control thus sets the highest frequency the first notch will reach. If it 
is set to zero, the notches will disappear entirely when the LFO reaches its 
minimum value: when the original and delayed signals are exactly aligned, 
no cancelation will take place at any frequency. Similarly, the sum of the 
delay and sweep width controls determines the lowest frequency the first 
notch will reach.

Total
Delay

Delay
Parameter

Sweep
Width
(LFO amplitude)

Time

LFO Period

FIGURE 2.15
The maximum delay is the sum of the sweep width and delay parameters. The delay changes 
over time according to the sweep rate.
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Speed and Waveform

These controls affect the behavior of the LFO controlling the delay length. 
The speed control sets the LFO frequency and typically ranges from 0.1 Hz 
(10 s per cycle) to 10 Hz. Waveform is usually chosen from one of several pre-
defined values, including sine, triangle, sawtooth, or exponential (triangular 
in log frequency). Many flangers do not offer this control and always use a 
sinusoidal LFO. In this case, the total delay M[n] is given by

	 M n M
M

f n fW
LFO s[ ] sin= + + ( )0 2

1 2π 	 (2.28)

where M0 (in samples) is given by the delay control, MW (in samples) is given 
by the sweep width control, fLFO (in Hertz) is given by the speed control, and 
fs (in Hertz) is the sampling frequency. We can see that the value of M[n] 
varies from M0 at minimum to M0 + MW at maximum, consistent with the 
expected behavior of these controls.

Feedback (or Regeneration)

The basic flanger has only a feedforward path, in which the delayed signal 
is added to the original. In a flanger with feedback, the feedback/regeneration 
control sets the gain gFB between output and input of the delay line. Possible 
values are in the range [0, 1), i.e., strictly less than 1, to maintain stability. 
In practice, values close to 1 are rarely used except for special effects. Even 
when the system is mathematically stable, large gains at the peaks can result 
in clipping distortion depending on the level of the input.

Inverted Mode (or Phase)

On some flangers, the feedforward gain g or gFF can be altered in polarity. 
Inverted mode is typically selected with a switch; when activated, g ranges 
from 0 to –1 instead of 0 to 1, in which case, the peaks and notches in the 
frequency response will trade places; the lowest peak will occur at f = fs/2M 
Hz and the lowest notch at f = 0 (DC). Because of the notch at DC, the bass 
response in the inverted mode is poor, producing a thinner sound unless M 
is very large (which reduces the frequency of the lowest peak). The different 
color of the inverted mode flanger can be useful in some musical situations.

Implementation

Buffer Allocation

The flanger, like all delay-based effects, is typically implemented digitally 
using circular buffers (see Chapter 13). Memory allocation and deallocation 
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are highly time-consuming in comparison to basic audio calculations. Since 
the length of the delay changes with the phase of the LFO, the buffer is 
preallocated to be large enough to accommodate the maximum amount of 
delay at any point in the LFO cycle, for any settings of the delay and sweep 
width parameters.

The actual length of delay at any time is controlled by the distance between 
the read pointer and write pointer in the buffer. In a typical implementation, 
the write pointer will move at a constant speed, advancing one sample in the 
buffer for each input sample. Moving the read pointer faster than this rate will 
decrease the amount of delay, while moving it slower will increase the delay.

Interpolation

Since the delay of the flanger changes by small amounts each sample, it will 
inevitably take fractional values. As discussed previously in this chapter, 
mathematically exact fractional delay involves calculations requiring knowl-
edge of the complete signal extending to infinity in both directions. This is 
clearly impractical, so approximations based on low order polynomial inter-
polation are used that are suitable for real-time computation. Interpolation is 
always used when calculating the delayed signal of the flanger.

Code Example

The following C++ code fragment, adapted from the code that accompanies 
this book, implements a flanger with feedback.

// Variables whose values are set externally:
int numSamples;     // How many audio samples to process
float *channelData; // Array of samples, length numSamples
float *delayData;   // Our own circular buffer of samples
int delayBufLength; // Length of our delay buffer in samples
int dpw;            // Write pointer into the delay buffer
float ph;           // Current LFO phase, always between 0-1
float inverseSampleRate; // 1/f_s, where f_s = sample rate

// User-adjustable effect parameters:
float frequency_;   // Frequency of the LFO
float sweepWidth_;  // Width of the LFO in samples
float depth_;       // Amount of delayed signal mixed with 
                    // original (0-1)
float feedback_;    // Amount of feedback (>= 0, < 1)    

for (int i = 0; i < numSamples; ++i)
{
    const float in = channelData[i];
    float interpolatedSample = 0.0;
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    // Recalculate the read pointer position with respect to 
    // the write pointer.
    float currentDelay = sweepWidth_ * (0.5f + 
                              0.5f * sinf(2.0 * M_PI * ph));

    // Subtract 3 samples to the delay pointer to make sure 
    // we have enough previous samples to interpolate with
    float dpr = fmodf((float)dpw 
                   - (float)(currentDelay * getSampleRate())
                   + (float)delayBufLength - 3.0,
                   (float)delayBufLength);

    // Use linear interpolation to read a fractional index 
    // into the buffer.
    float fraction = dpr - floorf(dpr);
    int previousSample = (int)floorf(dpr);
    int nextSample = (previousSample + 1) % delayBufLength;
    interpolatedSample = fraction*delayData[nextSample]
        + (1.0f-fraction)*delayData[previousSample];

    // Store the current information in the delay buffer. 
    // With feedback, what we read is included in what gets 
    // stored in the buffer, otherwise it’s just a simple 
    // delay line of the input signal.
    delayData[dpw] = in + (interpolatedSample * feedback_);

    // Increment the write pointer at a constant rate.
    if (++dpw >= delayBufLength)
        dpw = 0;

    // Store the output in the buffer, replacing the input
    channelData[i] = in + depth_ * interpolatedSample;

    // Update the LFO phase, keeping it in the range 0-1
    ph += frequency_*inverseSampleRate;
    if(ph >= 1.0)
        ph -= 1.0;
}

This code example is nearly identical to the code for vibrato. The main 
differences appear at the end of the example, where feedback is used on the 
delay buffer and the original (dry) signal is mixed with the output:

delayData[dpw] = in + (interpolatedSample * feedback_);
// [...]   
channelData[i] = in + depth_ * interpolatedSample;

For this reason, the flanger also has feedback and depth parameters where 
the vibrato example did not. This example code for the flanger could be used 
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with slight modifications and different parameter values (mainly longer 
delay time) to implement a chorus. Complete flanger and chorus examples 
accompany this book, including variable LFO waveform and stereo options.

Applications

The flanger originated as a way of conveniently simulating the double-
tracking effect on vocals, but its application goes well beyond the voice. 
Flanging is commonly used as a guitar effect (where it can be implemented 
with analog or digital electronics) and is often applied to drums and other 
instruments. The frequency of the LFO can be aligned to the tempo of the 
music for beat-synchronous effects.

Resonant Pitches

Recall that audio signals of a single pitch are typically composed of 
harmonically related sinusoids, i.e., integer multiples of a fundamental fre-
quency. Because the peaks and notches in the flanger frequency response are 
always uniformly spaced, they can impose a discernible resonant pitch on 
the audio signal. The effect is similar to being inside a resonant tube whose 
length changes over time according to the amount of delay [1]. The resonance 
effect is particularly strong when feedback is used and when the depth con-
trol is at its maximum.

Avoiding Disappearing Instruments

The notches in a flanger are spaced at regular intervals in frequency, much 
like the harmonics of a musical instrument, where the signal consists of regu-
lar multiples of a fundamental frequency. If a flanger is applied to an instru-
ment sound and the notches happen to line up precisely with the instrument’s 
harmonics, it is possible for the instrument to disappear entirely. In practice, 
the effect will never be perfect and the instrument will not be completely 
eliminated, but strange amplitude modulation effects could take place as the 
notches sweep up and down. This problem does not occur when flanging is 
applied to more noise-like signals, such as drums. Flanging can also be used 
on an entire mix, where the frequency content is likely to be complex enough 
to avoid these modulation effects.

Flanging versus Chorus

The flanger and the chorus are nearly identical in implementation, both 
being based on modulated delay lines. The primary difference is that the 
chorus uses longer delay times (30 ms is a typical value) to accentuate the 
perception of multiple instruments playing together. Flanging and chorus 
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are used in similar situations, but because of the greater delay between cop-
ies of the sound and corresponding perception of multiple instruments, cho-
rus is somewhat less likely to be used on complex audio sources such an 
entire mix.

Chorus

In music, the chorus effect occurs when several individual sounds with simi-
lar pitch and timbre play in unison. This phenomenon occurs naturally with 
a group of singers or violinists, who will always exhibit slight variations in 
pitch and timing, even when playing in unison. These slight variations are 
crucial to producing the lush or shimmering sound we are accustomed to 
hearing from large choirs or string sections. The chorus audio effect simu-
lates these timing and pitch variations, making a single instrument source 
sound as if there were several instruments playing together.

Theory

Basic Chorus

Figure 2.16 shows a block diagram of a basic chorus, in which a delayed copy 
of the input signal is mixed with the original. As with the flanger and vibrato 
effect, the delay length varies with time (modulated delay line). The input/
output relationship can be written as

	 y n x n gx n M n[ ] [ ] [ ]= + −[ ]	 (2.29)

Notice that this formula is identical to the basic flanger presented in the pre-
vious section. In general, the chorus effect is nearly identical to the flanger, 
using the same structure with different parameters. The main difference 
is the delay length, which in a chorus is usually between 20 and 30 ms, in 

+Delay M(n)
x[n] y [n]

g

LFO

FIGURE 2.16
The flow diagram for the chorus effect including its LFO dependence. The delay changes 
with time.
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contrast to delays between 1 and 10 ms in the flanger. We saw previously 
that the flanger produces patterns of constructive and destructive interference, 
resulting in a frequency response characterized by evenly spaced peaks and 
notches:

	 H e g M n gj( ) cos [ ]ω ω= + ( ) +1 2 2 	 (2.30)

with the peaks (points of maximum frequency response) located at

	 ω πp p M p M= = … −2 0 1 2 1/ where , , , , 	 (2.31)

and the notches (minimum frequency response) at

	 ω πn n M n M= + = … −( ) where , , , ,2 1 0 1 2 1/ 	 (2.32)

Thus, the comb filtering produced by the flanger also occurs in the chorus. 
However, the longer delay M[n] substantially alters its perceived effect. At a 
sample rate of 48 kHz, a 30 ms delay corresponds to M = 1440 samples. There 
will therefore be 1440 peaks and 1440 notches in the frequency response, each 
located at intervals of fs/M (recalling that ω = 2π corresponds to the sampling 
frequency fs). Thus, a peak will occur every 33.3 Hz, with notches likewise 
spaced every 33.3 Hz. These are close enough together that the characteristic 
sweeping timbre of the flanger is no longer perceptible. In particular, any 
sense that the comb filter has a definite pitch (owing to its regularly spaced 
peaks) will be lost at such close spacing. Nonetheless, though the sound is 
different from the flanger, this comb filtering is an important part of the 
sonic signature of the chorus effect.

Considered a different way, a delay on the order of 20–30 ms begins to 
approach the threshold where two separate sonic events can be perceived, 
though a clear perception of an echo requires a longer delay still (100 ms or 
more). So the chorus can also be heard as two separate copies of the same 
sound, whose exact timing relationship changes over time as M[n] changes. 
Both understandings are mathematically correct; the only difference lies in 
human audio perception.

Low-Frequency Oscillator

In the chorus, as in the flanger, the delay length M[n] varies under the control 
of a low-frequency oscillator. Several waveforms can be used for the LFO, 
with sinusoids being the most common. In comparison to the flanger, slower 
LFO sweep rates (3 Hz or less) but higher LFO sweep widths (5 ms or more) 
are typically used. As with all modulated delay effects, interpolation is used 
to calculate the output of the delay line whenever M[n] is not an integer.
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Pitch-Shifting in the Chorus

The wider sweep width (delay variation) in the chorus has an important con-
sequence on the pitch of the delayed sound. As was shown for the vibrato 
effect, changing the length of a delay line introduces a pitch shift into its out-
put, where lengthening the delay scales all frequencies in a signal down, 
and reducing the delay scales them up. Recall the formula for pitch shift as a 
function of LFO frequency f, sweep width W, and sample rate fs:

	 f n fW nf fratio s[ ] cos≈ − ( )1 2 2π π 	 (2.33)

Given that the cosine function ranges from –1 to 1, we can find the maxi-
mum pitch shift for any given set of parameters as

	 f fWratio,max = +1 2π 	 (2.34)

For f = 1 Hz and sweep width W = 10 ms, this results in a pitch ratio of 
1.063 (6.3% variation), slightly more than a semitone (5.9%) in either direc-
tion. This is a noticeable amount of tuning variation between the original 
and delayed copies of the signal, which can simulate and even exaggerate the 
natural variation in pitch between musicians playing in unison. Note that in 
comparison to the vibrato effect, the chorus mixes the original and delayed 
copies, so a single pitch shift is not heard.

Multivoice Chorus

The basic chorus can be considered a single-voice chorus in that it adds a single 
delayed copy to the original signal. A multivoice chorus, by contrast, involves 
several delayed copies of the input signal mixed together, with each delayed 
copy moving independently. Figure 2.17 shows a diagram for an arrange-
ment with two delayed copies (dual voice). Each individual voice can be ana-
lyzed identically to the basic chorus described in the preceding sections, but 
the sum total of all voices will produce a more complex, richer tone suggest-

+
x[n] y[n]

Delay M1(n)

Delay M2(n)

g1

LFO

g2

LFO

FIGURE 2.17
A multivoice chorus diagram.
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ing multiple instruments played in unison. The “Implementation” section 
below discusses control strategies for the voices in a multivoice chorus.

Stereo Chorus

Stereo chorus is a variation on multivoice chorus, where each delayed copy 
of the signal is panned to a different location in the stereo field. When two 
voices are used, the delayed signals are typically panned completely to the 
left and right, with the original signal in the center. In this case, the two 
voices are usually run in quadrature phase: each LFO has the same sweep 
rate and same sweep width, but they differ in phase by 90°. When more than 
two voices are used, they may be spread evenly across the stereo field or 
split into two groups, with one group panned hard left and the other group 
panned hard right.

Properties

The chorus is implemented identically to a flanger without feedback, so it 
shares the same properties. Notably, since delay and mixing are linear opera-
tions, the chorus is a linear effect (for any number of voices). The delay M[n] 
changes over time under the control of the LFO, so the chorus is a time-
variant effect: an input signal applied at one time may produce a differ-
ent result than the same signal applied at a different time if the LFO phase 
differs. Since the chorus never involves feedback, it is always stable, with a 
bounded input producing a bounded output.

Common Parameters

Chorus effects have several user-adjustable controls.

Depth (or Mix)

As with the flanger, the depth controls affect the amount of delayed signal(s) 
that are mixed in with the original. g = 0 produces no effect, whereas g = 1 
produces the most pronounced chorus effect. Higher depth settings (g > 1) 
make the delayed copies louder than the original, a setting rarely found in 
practice as it produces a weaker chorus effect than g = 1. Some simple chorus 
effects may not have this control (always setting g to 1). Confusingly, the 
term depth is also sometimes used to refer to sweep width, or the amount of 
variation in the delay. When examining an existing chorus effect, it is thus 
important to find out what the depth control means.

Delay and Sweep Width

The delay parameter on the chorus controls the minimum amount of delay 
M[n]. Typical values are on the order of 20 to 30 ms, and this setting represents 
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one of the primary differences between flanger and chorus. The sweep width 
(which is sometimes called sweep depth, but should not be confused with 
depth/mix) controls the amount of additional delay added by the LFO. In 
other words, sweep width controls the amplitude of the LFO, and the maxi-
mum delay is given by the sum of delay and sweep width. The relationship 
between the delay and sweep width parameters is depicted in Figure 2.15. 
Typical values for sweep width range from 1–2 to 10 ms or more. A larger 
sweep width will result in more pitch, creating a warbling effect, whereas 
changing the delay parameter will not affect the pitch modulation.

Speed and Waveform

As in the flanger, the speed (or sweep rate) sets the number of cycles per second 
of the LFO controlling the delay time. In addition to producing a more quickly 
oscillating chorus effect, higher speed will produce more pronounced pitch 
modulation for the same sweep width, since the delay line length will be 
changing more quickly over time. Typical values in the chorus are slower 
than in the flanger, ranging from roughly 0.1 to 3 Hz.

The waveform control selects one of several predefined LFO wave-
forms, including sine, triangle, sawtooth, or exponential (triangular in log 
frequency). In addition to controlling how the voices move in time, each 
waveform will affect the type of pitch modulation. For example, the deriva-
tive of a sine wave is a cosine, which is always changing, so the pitch is 
always changing as well. A triangular waveform, though, has only two dis-
crete slopes, so the pitch will jump back and forth between two fixed values. 
Many chorus effects do not offer a waveform parameter and always use a 
sine LFO. As with the flanger, this results in a total delay M[n] given by

	 M n M
M

f n fW
LFO s[ ] sin= + + ( )0 2

1 2π 	 (2.35)

where M0 (in samples) is given by the delay control, MW (in samples) is given 
by the sweep width control, fLFO (in Hertz) is given by the speed control, and fs 
(in Hertz) is the sampling frequency. M[n] thus varies from M0 to M0 + MW.

Number of Voices

As discussed in the previous section, a multivoice chorus uses more than one 
delayed copy of the input sound, simulating the effect of more than two instru-
ments being played in unison. Many chorus units give the option of choosing 
the number of voices. In a simple implementation, each voice could be con-
trolled by the same LFO, but with a different phase. The delay time will be 
different for each voice since they are at different points in the waveform, but 
they will remain synchronized to one another over time. More complex imple-
mentations can use different LFO waveforms and speeds for each voice.
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Other Variations

When multiple instruments play in unison, the variations between them are 
likely to be more random than periodic. Instead of using a fixed-speed LFO, 
the delay time between voices could be changed in a more irregular, quasi-
random fashion (keeping in mind that abrupt changes in delay will produce 
audible pitch artifacts). Another variation is to modulate the amplitude of 
each voice to model the fact that musicians playing in unison will not all 
have the same relative loudness.

Summary: Flanger and Chorus Compared

The chorus and flanger effects are nearly identical in structure. The main 
differences are in the parameter settings: the chorus uses a longer delay time 
than the flanger and often a larger sweep width. These together produce 
more sense of separation between the original and delayed copies of the sig-
nal and more pitch modulation. The chorus tends to use a lower speed or 
sweep rate than the flanger, though there is a significant area of overlap. 
One structural difference is that the flanger can use feedback to produce a 
more intense effect, whereas this is almost never found in the chorus. On 
the other hand, the chorus can use more than one delayed copy of the sound 
(multivoice chorus), where the flanger uses only one copy (except in a ste-
reo flanger). When chorus and flanger effects are implemented in stereo, the 
same procedure is used in both cases, panning one delayed copy to the left 
and one to the right, though a multivoice chorus with more than two delayed 
copies allows further variations on this procedure.

Problems

	 1.	Suppose we want to delay a signal by 2.5 samples. Briefly explain 
two different methods of calculating the new signal and their rela-
tive advantages and disadvantages.

	 2.	Consider a signal x[0] = 0.8, x[1] = 0.4, x[2] = 0.1, x[3] = –0.15, x[4] = –0.4. 
Use zero-, first-, and second-order interpolation to estimate the value 
x[1.7].

	 3.	a.	 Draw a block diagram for delay with feedback. Label the input 
x[n], output y[n], and any other commonly used parameters.

	 b.	 Under what conditions is the system stable? Why?
	 4.	A delay without feedback produces notches at 300 and 900 Hz. List 

at least three other frequencies where notches will also be present, 
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and explain why. For a sample rate of 48 kHz, how many samples of 
delay could produce this comb filter?

	 5.	There are two microphones on a guitar, one close microphone 
placed only 5 cm away, picking up the direct sound, another 
placed 1.5 m away from the guitar, picking up the room sound. 
How much delay should be added to the close microphone to align 
the two signals?

	 6.	a.	 Draw a block diagram of a basic flanger. Now draw a block dia-
gram of a flanger incorporating feedback or regeneration.

	 b.	 Derive the frequency response of a flanger without feedback.
	 c.	 Based on your block diagram in part (a), write the difference 

equation(s) for a flanger with feedback, relating the output y[n] to the 
input x[n]. Define any other variables you use in your equation(s).

	 d.	 Describe whether or not the flanger is linear, time invariant, and 
stable. Explain why, and whether the answer depends on param-
eter settings or whether feedback is used.

	 7.	Define the following parameters for a flanger: depth, delay, sweep 
width, and sweep rate. Describe the effect of varying their settings.

	 8.	Why do we not hear an echo when flanging is applied?
	 9.	How does chorus differ from flanger in terms of the LFO settings 

and use of feedback?
	 10.	Suppose we implement the flanger with a circular buffer. We may 

hear artifacts as the delay length changes. Explain why this occurs 
and suggest a solution to overcome it.

	 11.	a.	 Starting with the template in Figure 2.18, draw a block diagram 
for a ping-pong delay with mono input and stereo output. Label 
the inputs x1[n] and x2[n], the outputs y1[n] and y2[n], and any 
other commonly used parameters.

	 b.	 Give the transfer function and difference equation for ping-pong 
delay. That is, find Y1(z) and Y2(z) in terms of X1(z) and X2(z).

x1[n] y1[n]

y2[n]x2[n]

Delay D

Delay D

x1[n] y1[n]

y2[n]x2[n]

Delay D

Delay D

FIGURE 2.18
Template for a ping-pong delay.
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	 c.	 Suppose the ping-pong delay was extended to four-channel out-
put, with the input sound bounced sequentially around them. 
Draw a block diagram for this arrangement.

	 d.	 With delays of length D, how large does the total buffer need to 
be (in samples) for the two- and four-channel ping-pong delays?

	 12.	a.	 For a vibrato effect, suppose that the delay time is given by d(t) = 
M + Wsin(2πft), where M is the average delay, W is the sweep 
width, and f is the LFO frequency. If M = 5 ms and f = 6 Hz, 
find the value of W needed to give a maximum pitch shift of 1.03 
(roughly half a semitone). You can leave the result as a fraction.

	 b.	 The plot in Figure 2.19 shows the relative pitch at the output of 
a vibrato unit. What LFO waveform was used to produce this 
result, and why?
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FIGURE 2.19
Relative pitch at the output of a vibrato unit.
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