
ADSP-21xx

REV. B –1–

Instruction Set
The ADSP-21xx assembly language uses an algebraic syntax for
ease of coding and readability. The sources and destinations of
computations and data movements are written explicitly in each
assembly statement, eliminating cryptic assembler mnemonics.

Every instruction assembles into a single 24-bit word and
executes in a single cycle. The instructions encompass a wide
variety of instruction types along with a high degree of

operational parallelism. There are five basic categories of
instructions: data move instructions, computational instruc-
tions, multifunction instructions, program flow control instruc-
tions and miscellaneous instructions. Multifunction instructions
perform one or two data moves and a computation.

The instruction set is summarized below. The ADSP-2100
Family Users Manual contains a complete reference to the
instruction set.

ALU Instructions
[IF cond] AR|AF = xop + yop [+ C] ; Add/Add with Carry

= xop – yop [+ C– 1] ; Subtract X – Y/Subtract X – Y with Borrow
= yop – xop [+ C– 1] ; Subtract Y – X/Subtract Y – X with Borrow
= xop AND yop ; AND
= xop OR yop ; OR
= xop XOR yop ; XOR
= PASS xop ; Pass, Clear
= – xop ; Negate
= NOT xop ; NOT
= ABS xop ; Absolute Value
= yop + 1 ; Increment
= yop – 1 ; Decrement
= DIVS yop, xop ; Divide
= DIVQ xop ;

MAC Instructions
[IF cond] MR|MF = xop * yop ; Multiply

= MR + xop * yop ; Multiply/Accumulate
= MR – xop * yop ; Multiply/Subtract
= MR ; Transfer MR
= 0 ; Clear

IF MV SAT MR ; Conditional MR Saturation

Shifter Instructions
[IF cond] SR = [SR OR] ASHIFT xop ; Arithmetic Shift
[IF cond] SR = [SR OR] LSHIFT xop ; Logical Shift

SR = [SR OR] ASHIFT xop BY <exp>; Arithmetic Shift Immediate
SR = [SR OR] LSHIFT xop BY <exp>; Logical Shift Immediate

[IF cond] SE = EXP xop ; Derive Exponent
[IF cond] SB = EXPADJ xop ; Block Exponent Adjust
[IF cond] SR = [SR OR] NORM xop ; Normalize

Data Move Instructions
reg = reg ; Register-to-Register Move
reg = <data> ; Load Register Immediate
reg = DM (<addr>) ; Data Memory Read (Direct Address)
dreg = DM (Ix , My) ; Data Memory Read (Indirect Address)
dreg = PM (Ix , My) ; Program Memory Read (Indirect Address)
DM (<addr>) = reg ; Data Memory Write (Direct Address)
DM (Ix , My) = dreg ; Data Memory Write (Indirect Address)
PM (Ix , My) = dreg ; Program Memory Write (Indirect Address)

Multifunction Instructions
<ALU>|<MAC>|<SHIFT> , dreg = dreg ; Computation with Register-to-Register Move
<ALU>|<MAC>|<SHIFT> , dreg = DM (Ix , My) ; Computation with Memory Read
<ALU>|<MAC>|<SHIFT> , dreg = PM (Ix , My) ; Computation with Memory Read
DM (Ix , My) = dreg , <ALU>|<MAC>|<SHIFT> ; Computation with Memory Write
PM (Ix , My) = dreg , <ALU>|<MAC>|<SHIFT> ; Computation with Memory Write
dreg = DM (Ix , My) , dreg = PM (Ix , My) ; Data & Program Memory Read
<ALU>|<MAC> , dreg = DM (Ix , My) , dreg = PM (Ix , My) ; ALU/MAC with Data & Program Memory Read

ADSP-21xx

–2– REV. B

Program Flow Instructions
DO <addr> [UNTIL term] ; Do Until Loop
[IF cond] JUMP (Ix) ; Jump
[IF cond] JUMP <addr>;
[IF cond] CALL (Ix) ; Call Subroutine
[IF cond] CALL <addr>;
IF [NOT] FLAG_IN JUMP <addr>; Jump/Call on Flag In Pin
IF [NOT] FLAG_IN CALL <addr>;
[IF cond] SET|RESET|TOGGLE FLAG_OUT [, ...] ; Modify Flag Out Pin
[IF cond] RTS ; Return from Subroutine
[IF cond] RTI ; Return from Interrupt Service Routine
IDLE [(n)] ; Idle

Miscellaneous Instructions
NOP ; No Operation
MODIFY (Ix , My); Modify Address Register
[PUSH STS] [, POP CNTR] [, POP PC] [, POP LOOP] ; Stack Control
ENA|DIS SEC_REG [, ...] ; Mode Control

BIT_REV
AV_LATCH
AR_SAT
M_MODE
TIMER
G_MODE

Assembly Code Example
The following example is a code fragment that performs the filter tap update for an adaptive filter based on a least-mean-squared
algorithm. Notice that the computations in the instructions are written like algebraic equations.

MF=MX0*MY1(RND), MX0=DM(I2,M1); {MF=error* b eta}
MR=MX0*MF(RND), AY0=PM(I6,M5);

DO adapt UNTIL CE;
AR=MR1+AY0, MX0=DM(I2,M1), AY0=PM(I6,M7);

adapt: PM(I6,M6)=AR, MR=MX0*MF(RND);

MODIFY(I2,M3); {Point to oldest data}
MODIFY(I6,M7); {Point to start of data}

Notation Conventions
Ix Index registers for indirect addressing
My Modify registers for indirect addressing
<data> Immediate data value
<addr> Immediate address value
<exp> Exponent (shift value) in shift immediate instructions (8-bit signed number)
<ALU> Any ALU instruction (except divide)
<MAC> Any multiply-accumulate instruction
<SHIFT> Any shift instruction (except shift immediate)
cond Condition code for conditional instruction
term Termination code for DO UNTIL loop
dreg Data register (of ALU, MAC, or Shifter)
reg Any register (including dregs)
; A semicolon terminates the instruction
, Commas separate multiple operations of a single instruction
[] Optional part of instruction
[, ...] Optional, multiple operations of an instruction
option1 | option2 List of options; choose one.

