
EZ-KIT Lite
Reference Manual

ADSP-2100 Family

a

ADSP-2100 Family EZ-KIT LiteADSP-2100 Family EZ-KIT LiteADSP-2100 Family EZ-KIT LiteADSP-2100 Family EZ-KIT LiteADSP-2100 Family EZ-KIT Lite
Reference ManualReference ManualReference ManualReference ManualReference Manual
 1995 Analog Devices, Inc.
ALL RIGHTS RESERVED

PRODUCT AND DOCUMENTATION NOTICE: Analog Devices reserves the right to change this product
and its documentation without prior notice.

Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any infringement of patents,
or other rights of third parties which may result from its use. No license is granted by implication or
otherwise under the patent rights of Analog Devices.

EZ-ICE and EZ-LAB are trademarks of Analog Devices, Inc.
MS-DOS and Windows are trademarks of Microsoft, Inc.

PRINTED IN U.S.A.

Printing History
FIRST EDITION 5/95

For marketing information or Applications Engineering assistance, contact your local
Analog Devices sales office or authorized distributor.

If you have suggestions for how the ADSP-2100 Family EZ-KIT Lite or documentation
can better serve your needs, or you need Applications Engineering assistance from
Analog Devices, please contact:

Analog Devices, Inc.
DSP Applications Engineering
One Technology Way
Norwood, MA 02062-9106
Fax: (617) 461-3010
e-mail: dsp_applications@analog.com

The DSP Applications Engineering group runs a Bulletin Board Service that provides
answers to many DSP questions and information on Analog Devices DSP products.
The BBS can be reached at speeds up to 14,400 baud, no parity, 8 bits data, 1 stop
bit, dialing (617) 461-4258. This BBS supports: V.32bis, error correction (V.42 and
MNP classes 2, 3, and 4), and data compression (V.42bis and MNP class 5)

Please submit any technical questions or problems in writing and send it to the e-mail
address listed, the fax number listed, or to the BBS.

The DSP Applications Group also maintains an Internet FTP site. Login as anonymous
using your email address for your password. Type (from your UNIX prompt):

ftp ftp.analog.com (or type: ftp 137.71.23.11)

EZ-KIT Lite Hardware WarrantyEZ-KIT Lite Hardware WarrantyEZ-KIT Lite Hardware WarrantyEZ-KIT Lite Hardware WarrantyEZ-KIT Lite Hardware Warranty
Your EZ-KIT Lite hardware is warranted against defects in workmanship
and materials under normal use and service for 90 days from the date of
shipment by Analog Devices. This warranty does not extend to any units
which have been subjected to misuse, neglect, accident, or improper
installation or application, or which have been repaired or altered by
others. Analog Devices’ sole liability and the Purchaser’s sole remedy
under this warranty is limited to repairing or replacing defective products.
The repair or replacement of defective products does not extend the
warranty period. Analog Devices, Inc. shall not be liable for consequential
damages under any circumstances.

EZ-KIT Lite Hardware ServiceEZ-KIT Lite Hardware ServiceEZ-KIT Lite Hardware ServiceEZ-KIT Lite Hardware ServiceEZ-KIT Lite Hardware Service
Use the following procedure if you have a hardware problem with your
EZ-KIT Lite:

• Describe the situation in written form and send it to the DSP
Applications Group as described on the previous page. Make sure to
include any source code examples or special circumstances that will
help with problem diagnoses.

• You will receive a confirmation notice that explains a work-around to
your problem. If it is determined that the problem lies in your EZ-KIT
Lite, you will be directed to a sales representative to set up an EZ-KIT
Lite product return.

• The Sales Representative will provide you with a Material Return
Authorization number (MRA#) and the address to which you should
send your EZ-KIT Lite Product. (See the following notes.)

All Returns: The MRA# must be written on the box for Analog
Devices Receiving to accept shipment.

Warranty Returns: As mentioned in the warranty, the warranty period
begins with the shipment date. This information is
on the invoice for your EZ-KIT Lite Product. You
must provide the Sales Representative with the
shipment date information to obtain a warranty
repair.

EZ-KIT Lite Returns: After the 90 day warranty, no repair is available for
the EZ-KIT Lite.

LiteratureLiteratureLiteratureLiteratureLiterature
The following is a list of related literature. Literature can be obtained/
purchased from your local Analog Devices sales office or authorized
distributor.

ADSP-2100 Family User’s Manual (Prentice Hall)
Complete description of processor architectures and system interfaces.

ADSP-2171/81 User’s Manual
Information specific to the ADSP-2181.

ADSP-2100 Family Assembler Tools & Simulator Manual
ADSP-2100 Family C Tools Manual
ADSP-2100 Family C Runtime Library Manual
Programmer’s references.

APPLICATIONS INFORMATIONAPPLICATIONS INFORMATIONAPPLICATIONS INFORMATIONAPPLICATIONS INFORMATIONAPPLICATIONS INFORMATION

Digital Signal Processing Applications Using the ADSP-2100 Family,
Volume 1 (Prentice Hall)
Topics include arithmetic, filters, FFTs, linear predictive coding, modem
algorithms, graphics, pulse-code modulation, multirate filters, DTMF,
multiprocessing, host interface and sonar.

Digital Signal Processing Applications Using the ADSP-2100 Family,
Volume 2 (Prentice Hall)
Topics include modems, linear predictive coding, GSM codec, sub-band
ADPCM, speech recognition, discrete cosine transform, digital tone
detection, digital control system design, IIR biquad filters, software uart
and hardware interfacing.

SPECIFICATION INFORMATIONSPECIFICATION INFORMATIONSPECIFICATION INFORMATIONSPECIFICATION INFORMATIONSPECIFICATION INFORMATION

ADSP-21xx Data Sheet
ADSP-2181 Data Sheet
AD1847 Data Sheet

22222

2 – 12 – 12 – 12 – 12 – 1

ContentsContentsContentsContentsContents

CHAPTER 1CHAPTER 1CHAPTER 1CHAPTER 1CHAPTER 1 INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION

INTRODUCTION ... 1–1
UNPACKING ... 1–1
EZ-KIT LITE... 1–1
CONTENTS OF THIS MANUAL ... 1–2

CHAPTER 2CHAPTER 2CHAPTER 2CHAPTER 2CHAPTER 2 UPGRADE INFORMATIONUPGRADE INFORMATIONUPGRADE INFORMATIONUPGRADE INFORMATIONUPGRADE INFORMATION

OVERVIEW ... 2–1
UPGRADE DESCRIPTION ... 2–1

CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3 GETTING STARTEDGETTING STARTEDGETTING STARTEDGETTING STARTEDGETTING STARTED

OVERVIEW ... 3–1
QUICK START SOFTWARE INSTALLATION .. 3–2
REQUIREMENTS.. 3–3
QUICK START HARDWARE INSTALLATION ... 3–4

CHAPTER 4CHAPTER 4CHAPTER 4CHAPTER 4CHAPTER 4 INSTALLATION PROCEDURESINSTALLATION PROCEDURESINSTALLATION PROCEDURESINSTALLATION PROCEDURESINSTALLATION PROCEDURES

SOFTWARE INSTALLATION ... 4–1
SOFTWARE INSTALLATION PROCEDURE ... 4–1

Make Working Copies Of The Diskettes .. 4–1
Modify Your CONFIG.SYS File .. 4–1
Install The Software On Your Hard Disk .. 4–2

ENVIRONMENT VARIABLES ... 4–3
HARDWARE INSTALLATION ... 4–3

33333 ContentsContentsContentsContentsContents

2 – 22 – 22 – 22 – 22 – 2

CHAPTER 5CHAPTER 5CHAPTER 5CHAPTER 5CHAPTER 5 DSP SYSTEM DEVELOPMENTDSP SYSTEM DEVELOPMENTDSP SYSTEM DEVELOPMENTDSP SYSTEM DEVELOPMENTDSP SYSTEM DEVELOPMENT

OVERVIEW ... 5–1
System Requirements .. 5–1
System Design ... 5–2
Architecture Description File .. 5–2
Code Development ... 5–3
Running The Assembler ... 5–11
Running The Linker .. 5–11
Running The Simulator ... 5–12
Programming An EPROM .. 5–12
Running The ADSP-2181 EZ-KIT Lite Board ... 5–13
Debugging .. 5–13

CHAPTER 6CHAPTER 6CHAPTER 6CHAPTER 6CHAPTER 6 EZ-KIT LITE HOST PROGRAMEZ-KIT LITE HOST PROGRAMEZ-KIT LITE HOST PROGRAMEZ-KIT LITE HOST PROGRAMEZ-KIT LITE HOST PROGRAM

PROGRAM OVERVIEW ... 6–1
COMMAND SUMMARY .. 6–2
DETAILED COMMANDS .. 6–3

File Menu .. 6–3
View Menu .. 6–4

Toolbar ... 6–4
Status Bar .. 6–6

Demo Menu .. 6–6
DTMF ... 6–6
Filtering .. 6–8
Echo Cancellation .. 6–9
ADPCM .. 6–10
7.8k LPC .. 6–11
2.4k LPC .. 6–12

Floating Menu ... 6–12
Loading Menu ... 6–13

Download User Program and Go .. 6–13
Download User Program ... 6–15
Go .. 6–15
Upload Data Memory ... 6–16
Upload Program Memory .. 6–17
Download Data Memory .. 6–18
Download Program Memory .. 6–19

Options Menu ... 6–20
Settings .. 6–21
List Of Demos .. 6–21

33333ContentsContentsContentsContentsContents

2 – 32 – 32 – 32 – 32 – 3

Help Menu .. 6–22
About EZ-KIT ... 6–22

User Configurable Settings .. 6–22
Error Messages & Troubleshooting ... 6–23

RUNNING DEMOS ... 6–26
CREATING YOUR OWN PROGRAMS .. 6–27

CHAPTER 7CHAPTER 7CHAPTER 7CHAPTER 7CHAPTER 7 EZ-KIT LITE MONITOR PROGRAMEZ-KIT LITE MONITOR PROGRAMEZ-KIT LITE MONITOR PROGRAMEZ-KIT LITE MONITOR PROGRAMEZ-KIT LITE MONITOR PROGRAM

PROGRAM OVERVIEW ... 7–1
MONITOR FEATURES ... 7–1
RESTRICTIONS .. 7–1
CREATING YOUR OWN PROGRAMS TO BE USED WITH THE MONITOR.... 7–2
DEBUGGING... 7–5
DSP MEMORIES... 7–6

CHAPTER 8CHAPTER 8CHAPTER 8CHAPTER 8CHAPTER 8 EZ-KIT LITE HARDWARE DESCRIPTIONEZ-KIT LITE HARDWARE DESCRIPTIONEZ-KIT LITE HARDWARE DESCRIPTIONEZ-KIT LITE HARDWARE DESCRIPTIONEZ-KIT LITE HARDWARE DESCRIPTION

DESIGN OVERVIEW .. 8–1
SPECIFICATIONS .. 8–3
CONNECTORS ... 8–3
SWITCHES.. 8–4
INDICATORS .. 8–5
HARDWARE OPERATION ... 8–5
HARDWARE EXPANSION ... 8–5
EXPANSION CONNECTORS ... 8–7
HARDWARE DEBUGGING .. 8–9

PROGRAMMER’S QUICK REFERENCEPROGRAMMER’S QUICK REFERENCEPROGRAMMER’S QUICK REFERENCEPROGRAMMER’S QUICK REFERENCEPROGRAMMER’S QUICK REFERENCE

SCHEMATICSSCHEMATICSSCHEMATICSSCHEMATICSSCHEMATICS

11111

1 – 11 – 11 – 11 – 11 – 1

IntroductionIntroductionIntroductionIntroductionIntroduction

INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION
Congratulations! Your EZ-KIT Lite is one of the most cost effective,
powerful development systems available on the market. The ADSP-2181
used in the EZ-KIT Lite offers the highest integration and performance in
the 16-bit fixed-point DSP processor arena with 32K words of on-chip
RAM, 30 ns instruction cycle time, DMA ports, and low power modes.

UNPACKINGUNPACKINGUNPACKINGUNPACKINGUNPACKING
Your EZ-KIT Lite should contain the following items.

• ADSP-2181 Development Board
• 3.5" Software Diskette
• EZ-KIT Lite Manual
• DB9 to DB9 RS-232 Cable
• Power Supply (US only)

If you are missing any items, please contact your Analog Devices sales
office, authorized distributor, or reseller.

EZ-KIT LITEEZ-KIT LITEEZ-KIT LITEEZ-KIT LITEEZ-KIT LITE
EZ-KIT Lite provides an easy way for you to investigate the power of the
ADSP-2100 Family of processors and develop your own applications
based on these high-performance DSPs. It is a complete development
system package with a price that makes it ideal for getting started in DSP
and the performance to take you through all the phases of the
development process. With EZ-KIT Lite you can:

• Evaluate Analog Devices’ DSPs
• Learn About DSP Applications
• Develop DSP Applications
• Simulate & Debug Your Application
• Prototype Applications

11111 IntroductionIntroductionIntroductionIntroductionIntroduction

1 – 21 – 21 – 21 – 21 – 2

The EZ-KIT Lite consists of a small ADSP-2181 based development/
demonstration board with full 16-bit stereo audio I/O capabilities. In this
documentation, this board may be referred to as either the ADSP-2181
EZ-LAB® or the EZ-KIT Lite board. The terms are used interchangeably.
The board’s features include:

• ADSP-2181 33 MIPS DSP
• AD1847 Stereo SoundPort
• RS-232 Interface
• Socketed EPROM
• User Pushbuttons
• Power Supply Regulation
• Expansion Connectors
• User Configurable Jumpers

The board can run standalone or can simply connect to the RS-232 port of
your PC. A monitor program running on the DSP in conjunction with a
host program running on the PC lets you interactively download
programs as well as interrogate the ADSP-2181. The board comes with a
socketed EPROM so that you can run the monitor program and
demonstrations provided or you can plug in an EPROM containing your
own code.

The EZ-KIT Lite also comes with all the software you need to develop
sophisticated, high-performance DSP applications. An Assembler, Linker,
PROM Splitter utility, and Simulator are all included.

CONTENTS OF THIS MANUALCONTENTS OF THIS MANUALCONTENTS OF THIS MANUALCONTENTS OF THIS MANUALCONTENTS OF THIS MANUAL
This manual provides all the information you need to:

• Install the EZ-KIT Lite software on to an IBM compatible Personal
Computer

• Connect your EZ-KIT Lite to your PC
• Connect your EZ-KIT Lite to the power supply
• Connect an input source (such as a microphone or CD player) to your

EZ-KIT Lite
• Connect an output device (such as an amplified/powered speaker)
• Start the EZ-KIT Lite board
• Use the software provided
• Write your own ADSP-2181 programs to run on the EZ-KIT Lite board

11111IntroductionIntroductionIntroductionIntroductionIntroduction

1 – 31 – 31 – 31 – 31 – 3

Chapter 2 describes the general capabilities of the EZ-KIT Lite
development software and tells you what other features are available by
upgrading to the ADSP-2100 Family Development Software.

Chapter 3 contains basic information on how to get started. It is
recommended that you read this manual completely and thoroughly,
especially if you are new to programming a DSP processor. For those of
you who can’t wait and are anxious to power up the EZ-KIT Lite and
begin tinkering, this chapter provides you with the basics to get up and
running quickly.

Chapter 4 provides a detailed description for installing the various
software modules on to an IBM compatible PC. These software modules
include:

• ADSP-2181 Development Software
• EZ-KIT Lite Host Software
• Demonstration Programs
• Example Programs

This chapter also describes how to set up and use the EZ-KIT Lite board.

Chapter 5 provides an overview of the development process. This chapter
should give you most of the information you need to write your own
ADSP-2181 programs. Complete source code for an example program is
listed and described. You should be able to use this program as a basis for
writing your own program. Examples are also given for running the
Assembler, Linker, and PROM Splitter.

Chapter 6 describes the operation of the host program. The host program
runs under Windows™ on an IBM-compatible PC. The host program is
used to communicate to the ADSP-2181 EZ-LAB.

Chapter 7 describes the DSP monitor program that is shipped with the
EZ-KIT Lite. The EPROM installed on the EZ-KIT Lite board contains the
monitor. This chapter also details the guidelines that you should follow to
create your own DSP programs for use with the monitor.

Chapter 8 contains a detailed description of the EZ-KIT Lite hardware.
Information concerning expanding the EZ-KIT Lite to better suit your
needs is also provided.

11111 IntroductionIntroductionIntroductionIntroductionIntroduction

1 – 41 – 41 – 41 – 41 – 4

Programmer’s Quick Reference provides a quick reference of all the
assembly language instructions for the ADSP-2181. It also describes
operation of the Assembler, Linker, PROM Splitter, and Simulator.

Schematics contains the schematic diagrams for the EZ-KIT Lite board.

22222

2 – 12 – 12 – 12 – 12 – 1

Upgrade InformationUpgrade InformationUpgrade InformationUpgrade InformationUpgrade Information

OVERVIEWOVERVIEWOVERVIEWOVERVIEWOVERVIEW
EZ-KIT Lite is shipped with a version of software that is fully
functional for basic DSP development operations such as assembling,
linking, simulating/debugging, and PROM formatting. With this
software, you can create a high performance ADSP-2181 based system
with very sophisticated features. The EZ-KIT Lite software is more
powerful and complete than the software you find in some of the other
manufacturer’s DSP starter kits.

The Lite version is powerful enough to fill the needs of most users, but
those who want technical support and the full flexibility provided by a
C compiler, C source-level debugger, a complete set of libraries, a
librarian, and all of the simulators for the entire ADSP-2100 Family
may want to upgrade to the standard development software for the
ADSP-2100 Family.

UPGRADE DESCRIPTIONUPGRADE DESCRIPTIONUPGRADE DESCRIPTIONUPGRADE DESCRIPTIONUPGRADE DESCRIPTION
In addition to features found in the Lite version, the ADSP-2100 Family
Development Software adds:

• System Builder
Define your target system hardware in an architecture description
file. The Linker and the Simulator use this information to know
how much memory is in your system, which memory is RAM and
which is ROM, which memory is internal to the processor and
which is external, and what memory-mapped peripherals you
have.

• Simulators
Run an instruction level simulation of any ADSP-2100 Family
processor. All of the ADSP-2100 Family Simulators provide an
interactive, instruction-level simulation, displaying the cycle-by-
cycle operation of different portions of the processor and system
hardware through a window-based graphical user interface.

22222 Upgrade InformationUpgrade InformationUpgrade InformationUpgrade InformationUpgrade Information

2 – 22 – 22 – 22 – 22 – 2

• Librarian
Combine frequently used subroutines into a single library file to
simplify the task of linking and streamline system software.

• C Compiler
Code your applications in ANSI standard C. This compiler is based
on the industry-standard GNU C Compiler of the Free Software
Foundation.

• C Runtime Library
Use this C callable library for ANSI standard and custom DSP
functions. The C library includes functions for simplified interrupt
handling with automatic save and restore of registers.

• C Debugger
Simplify the process of debugging your programs with this C
Source Level Debugger which is integrated within the simulator
and emulator environments.

Compare and decide. A quick comparison of some of the features
available in the EZ-KIT Lite software and the ADSP-2100 Family
appears on the facing page.

22222Upgrade InformationUpgrade InformationUpgrade InformationUpgrade InformationUpgrade Information

2 – 32 – 32 – 32 – 32 – 3

Features

EZ-KIT
Lite

Software

ADSP-2100
Family

Software

System Builder (Create your
own architecture description files) √*

Assembler

Linker

ADSP-2101 Simulator (Also
simulates ADSP-2103, ADSP-2105
and ADSP-2115)

ADSP-2111 Simulator

ADSP-2171 Simulator

ADSP-2181 Simulator

C Compiler

C Runtime Libraries

C Debugger

Full Set of Documentation

Technical Support

√

√

√

√

√

√

√

√

√

√

√

√

√

√

* EZ-KIT Lite is shipped with an architecture description file for the ADSP-2181

Prom Splitter √√

Development Software Comparison

Librarian √

33333

3 – 13 – 13 – 13 – 13 – 1

Getting StartedGetting StartedGetting StartedGetting StartedGetting Started

OVERVIEWOVERVIEWOVERVIEWOVERVIEWOVERVIEW
The EZ-KIT Lite contains the ADSP-2181 EZ-LAB evaluation board,
ADSP-2181 Development Software, IBM PC compatible host software,
example programs and demos, and documentation. You can obtain
additional information and documentation from your local Analog
Devices sales office or authorized distributor. You may find this
documentation useful if you are planning to do a significant amount of
ADSP-2181 code development. The following documents can be
obtained or purchased:

ADSP-2100 Family User’s Manual
ADSP-2100 Family Assembler Tools & Simulator Manual
ADSP-2181 User’s Manual

To fully utilize all the functions of the EZ-KIT Lite you will need to
install the provided software on to an IBM compatible PC and connect
the EZ-KIT Lite board to the PC as well as connect it to a power
supply, analog input source and amplified speakers.

33333 Getting StartedGetting StartedGetting StartedGetting StartedGetting Started

3 – 23 – 23 – 23 – 23 – 2

QUICK START SOFTWARE INSTALLATIONQUICK START SOFTWARE INSTALLATIONQUICK START SOFTWARE INSTALLATIONQUICK START SOFTWARE INSTALLATIONQUICK START SOFTWARE INSTALLATION
This section contains a very brief description of the EZ-KIT Lite
software installation procedure. It is written for experienced PC users
familiar with installing software onto their PC.

The install utility for the EZ-KIT Lite should be run under Windows™.

1. Make sure Windows is running.

2. Insert EZ-KIT Lite Software disk into a floppy drive.
(usually A: or B:)

3. Open the Program Manager window, if it is not already open.

4. From the File menu, select Run. The Run dialog box should appear.

5. In the “Command line” box type A:\SETUP.EXE
(or B:\SETUP.EXE).

6. Click on OK or press enter.

7. Follow the instructions on the screen.

Note: You will need to edit your AUTOEXEC.BAT file in the following
manner.

1. Add the environment variable SET ADI_DSP=C:\ADI_DSP

2. Append to the path variable C:\ADI_DSP\21XX\BIN

A detailed installation procedure is described in the next chapter.

33333Getting StartedGetting StartedGetting StartedGetting StartedGetting Started

3 – 33 – 33 – 33 – 33 – 3

REQUIREMENTSREQUIREMENTSREQUIREMENTSREQUIREMENTSREQUIREMENTS
To run the EZ-KIT Lite software, you will need:

• 386- (or higher) based PC with a hard disk, high-density floppy disk
drive, color video card and VGA monitor, and a minimum of 2 MB
extended RAM.

• 4 MB of free disk space to install the software.

• DOS 3.1 or higher.

• Microsoft Windows 3.1 or higher.

The setup program will create the following tree in the specified
destination path:

 21XX\BIN Assembler, linker, simulator, and
splitter DOS executables

 21XX\ETC Error messages and simulator on-line
help

 21XX\INCLUDE 2181 header file
 21XX\LIB 2181 architecture file
 21XX\EZKITL Windows host program and demo

.EXE files
 21XX\EZKITL\2181\MONITOR Source code and batch file for creating

monitor program
 21XX\EZKITL\2181\DSP Source code and batch files for

creating demo .EXE files
 21XX\EZKITL\2181\DSP\ADPCM
 21XX\EZKITL\2181\DSP\DTMF
 21XX\EZKITL\2181\DSP\ECHO
 21XX\EZKITL\2181\DSP\FIRDEMO
 21XX\EZKITL\2181\DSP\LPC2K4
 21XX\EZKITL\2181\DSP\LPC7K8

33333 Getting StartedGetting StartedGetting StartedGetting StartedGetting Started

3 – 43 – 43 – 43 – 43 – 4

QUICK START HARDWARE INSTALLATIONQUICK START HARDWARE INSTALLATIONQUICK START HARDWARE INSTALLATIONQUICK START HARDWARE INSTALLATIONQUICK START HARDWARE INSTALLATION
The diagram below shows where connections for power, RS-232, audio
input, and audio output are made. After all connections are made,
apply power and press the reset button.

Green
Power

LED

Red
Flag Out

LED

Stereo
Audio
Input

Stereo
Audio
Output

DC
Power Supply

Connector
Serial Port (RS232)

Connector

AD1847
Stereo
Codec

ADSP-2181
Digital
Signal

Processor

Socketed EPROM

J1

J2

LINE

MIC Input
Source
Selector

(Default Shown)

a

ADSP-2181
EZ-KIT LITE

JP2

JP1

U3

U7

U2

P3

P2

P1

EZ-ICE

In-Circuit
Emulator

Connector

EPROM
Configuration

Jumper

Expansion
Connectors

RESET INTERRUPT FL1

RESET
Button

Processor
Interrupt
Button

Pin 1

Pin 1

Pin 1

ADSP-2181 EZ-LAB Board DiagramADSP-2181 EZ-LAB Board DiagramADSP-2181 EZ-LAB Board DiagramADSP-2181 EZ-LAB Board DiagramADSP-2181 EZ-LAB Board Diagram

A detailed installation procedure is described in the next chapter.

44444

4 – 14 – 14 – 14 – 14 – 1

Installation ProceduresInstallation ProceduresInstallation ProceduresInstallation ProceduresInstallation Procedures

SOFTWARE INSTALLATIONSOFTWARE INSTALLATIONSOFTWARE INSTALLATIONSOFTWARE INSTALLATIONSOFTWARE INSTALLATION
A diskette is included in your EZ-KIT Lite package. You should run
the installation program contained on the diskette under Windows™.
The installation program will create all the required directories and
subdirectories and install the appropriate files.

SOFTWARE INSTALLATION PROCEDURESOFTWARE INSTALLATION PROCEDURESOFTWARE INSTALLATION PROCEDURESOFTWARE INSTALLATION PROCEDURESOFTWARE INSTALLATION PROCEDURE
The software requires:

• 386- (or higher based) PC with a hard disk, high-density floppy disk
drive, color video card and VGA monitor, and a minimum of 2 MB
extended RAM.

• 4 MB of free disk space to install the software.

• DOS 3.1 or higher.

• Microsoft Windows 3.1 or higher.

STEP 1:STEP 1:STEP 1:STEP 1:STEP 1: Make Working Copies Of The DiskettesMake Working Copies Of The DiskettesMake Working Copies Of The DiskettesMake Working Copies Of The DiskettesMake Working Copies Of The Diskettes
Before installing the software, you should copy the original diskette
onto a working disk. This can be accomplished with either the XCOPY
or COPY MS-DOS command (do not use the DISKCOPY command).
The original disk should be stored in a safe place and used only to
create a working disk.

STEP 2:STEP 2:STEP 2:STEP 2:STEP 2: Modify Your CONFIG.SYS FileModify Your CONFIG.SYS FileModify Your CONFIG.SYS FileModify Your CONFIG.SYS FileModify Your CONFIG.SYS File
To ensure proper operation of the development software, add (or
modify) the directive FILES=25 in the CONFIG.SYS file (FILES
may also be set to a number greater than 25). You should also add (or
modify) the directive BUFFERS=30 in the CONFIG.SYS file. After
modifying the CONFIG.SYS file, the PC must be rebooted for the
change to take effect.

44444 Installation ProceduresInstallation ProceduresInstallation ProceduresInstallation ProceduresInstallation Procedures

4 – 24 – 24 – 24 – 24 – 2

STEP 3:STEP 3:STEP 3:STEP 3:STEP 3: Install The Software On Your Hard DiskInstall The Software On Your Hard DiskInstall The Software On Your Hard DiskInstall The Software On Your Hard DiskInstall The Software On Your Hard Disk
Follow these directions to install the software on your hard disk.

1. Make sure Windows is running.

2. Insert EZ-KIT Lite Software disk into a floppy drive.
(usually A: or B:)

3. Open the Program Manager window, if it is not already open.

4. From the File menu, select Run. The Run dialog box should appear.

5. In the “Command line” box type A:\SETUP.EXE
(or B:\SETUP.EXE).

6. Click on OK or press enter.

7. Follow the instructions on the screen.

Note: You will need to edit your AUTOEXEC.BAT file in the following
manner.

1. Add the environment variable SET ADI_DSP=C:\ADI_DSP

2. Append to the path variable C:\ADI_DSP\21XX\BIN

The setup program will create the following tree in the specified
destination path:

21XX\BIN Assembler, linker, simulator, and
splitter DOS executables

 21XX\ETC Error messages and simulator help
 21XX\INCLUDE 2181 header file
 21XX\LIB 2181 architecture file
 21XX\EZKITL Windows host program and demo files
 21XX\EZKITL\2181\MONITOR Source code and batch file for monitor
 21XX\EZKITL\2181\DSP Source code and batch files for demos
 21XX\EZKITL\2181\DSP\ADPCM
 21XX\EZKITL\2181\DSP\DTMF
 21XX\EZKITL\2181\DSP\ECHO
 21XX\EZKITL\2181\DSP\FIRDEMO
 21XX\EZKITL\2181\DSP\LPC2K4
 21XX\EZKITL\2181\DSP\LPC7K8

44444Installation ProceduresInstallation ProceduresInstallation ProceduresInstallation ProceduresInstallation Procedures

4 – 34 – 34 – 34 – 34 – 3

ENVIRONMENT VARIABLESENVIRONMENT VARIABLESENVIRONMENT VARIABLESENVIRONMENT VARIABLESENVIRONMENT VARIABLES
The following environment variables should be created and assigned
default values (they should be copied into your AUTOEXEC.BAT file,
to be invoked automatically when the PC is booted):

ADI_DSP Path to the directory containing the installed files
(default is ADI_DSP= C:\ADI_DSP\)

HARDWARE INSTALLATIONHARDWARE INSTALLATIONHARDWARE INSTALLATIONHARDWARE INSTALLATIONHARDWARE INSTALLATION
Place the board on a flat surface. Connect J3 to a serial port (COM port)
on a PC. If the serial port on the PC is IBM compatible the cable should
be a straight through DB9 male to DB9 female cable. The PC may have
a 25 pin connector instead of a 9 pin connector. In this case, you can
use a DB9 male to DB25 female adapter.

Connect amplified speakers to J2. Labtec part number CS-550 is an
example of such speakers. Make sure that the amplifier for the
speakers is on. Optionally a microphone or line level audio source may

Green
Power

LED

Red
Flag Out

LED

Stereo
Audio
Input

Stereo
Audio
Output

DC
Power Supply

Connector
Serial Port (RS232)

Connector

AD1847
Stereo
Codec

ADSP-2181
Digital
Signal

Processor

Socketed EPROM

J1

J2

LINE

MIC Input
Source
Selector

(Default Shown)

a

ADSP-2181
EZ-KIT LITE

JP2

JP1

U3

U7

U2

P3

P2

P1

EZ-ICE

In-Circuit
Emulator

Connector

EPROM
Configuration

Jumper

Expansion
Connectors

RESET INTERRUPT FL1

RESET
Button

Processor
Interrupt
Button

Pin 1

Pin 1

Pin 1

44444 Installation ProceduresInstallation ProceduresInstallation ProceduresInstallation ProceduresInstallation Procedures

4 – 44 – 44 – 44 – 44 – 4

be connected to J1. JP2 must be set to correspond to the type of input
connected to J1. Two examples of suitable microphones are Radio
Shack part number 33-1060 and Labtec part number AM-22.

Plug a 9 volt DC power supply capable of supplying at least 300 milli-
amps into J4. The plug should be a P5 type connector with an outer
diameter of 5.5 mm and an inner diameter of 2.1 mm. The outer sleeve
of the plug must be positive polarity. Radio Shack catalog number 273-
1455C is a suitable device. When power is applied the green LED
labeled D2 will come on. When the DSP boots from the EPROM it will
send out a sign-on message over the RS-232 connection, generate an
audio signal which is sent to the speakers, and begin flashing the red
LED (D1).

If the green LED fails to light, check your power connections. Verify
that your power supply has the proper size connector and that the
polarity is correct. The power supply voltage measured at the
connector to the board should be in the range of 8 to 10 volts DC. Also,
make sure that there are no objects beneath or on top of the board that
may be causing a short circuit.

If the power connection is good and the green LED is lit yet the red
LED does not flash and no audio signal was produced, make sure that
the EPROM is properly seated in the socket.

Hit the reset button if the board appears to be operating improperly.

55555

5 – 15 – 15 – 15 – 15 – 1

DSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System Development

OVERVIEWOVERVIEWOVERVIEWOVERVIEWOVERVIEW
If you’d like to develop your own programs, you can use the software
development tools provided with the EZ-KIT Lite. If you have limited
experience in developing code for a DSP based system you should
review the following steps. Reading all the related product
documentation would also be very useful.

The following development steps serve as a guideline for creating your
own programs. Keep in mind that the development process varies
depending upon the style of the particular developer. Follow this
guideline as a starting point and feel free to modify it to suit your own
work style. In many cases you will be able to skip a step because of the
components shipped with EZ-KIT Lite. For example, the hardware
development and architecture description process is described below,
yet it is not necessary to follow this step since the ADSP-2181
development board is included in the EZ-KIT Lite package. There is
also an architecture description file for the ADSP-2181 board included
with the EZ-KIT Lite. This file is to be used with the development
system software. The following sections explain these topics in more
detail.

All commands that are mentioned throughout the following sections
are to be typed at the DOS prompt (C:\>). In most cases, it does not
matter in which actual directory you are.

Step 1: System RequirementsStep 1: System RequirementsStep 1: System RequirementsStep 1: System RequirementsStep 1: System Requirements
The first step in developing a DSP system is to determine what
capabilities the system will need. These capabilities will depend on the
types of algorithms being implemented, the types of signals being used
and the types of I/O devices that need to be connected to the DSP
processor. An evaluation of the size requirement for data memory and
program memory is made based on the amount of data being acquired
by the I/O and the amount of processing being performed. The
estimated size of the program created by implementing the algorithms
used also determines the required program memory.

55555 DSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System Development

5 – 25 – 25 – 25 – 25 – 2

For example, I may be building a speech processing system so I select
an appropriate algorithm, such as LPC, for speech compression. This
algorithm requires a certain amount of data storage as specified by the
algorithm and a certain amount of program instruction storage
determined by the amount of code needed to implement the algorithm.
Of course, since at this stage the algorithm has not yet been
implemented, these requirements are only approximations. For this
example, let’s say I need 4K words of data memory and 1K words of
program memory. The internal memory of the ADSP-2181 is large
enough. I would like to use an A/D and D/A for analog signal I/O. In
this case I will connect an audio codec to the serial port of the DSP. I
would like the DSP processor to be able to keep up with the speed of
the data samples coming in from the I/O. The 33 MHz ADSP-2181 has
more than enough speed.

Step 2: System DesignStep 2: System DesignStep 2: System DesignStep 2: System DesignStep 2: System Design
Once the system requirements are determined, a hardware system can
be designed. In this case, an ADSP-2181 based system has been
designed for you. This design utilizes an AD1847 Audio Codec to
perform the A/D and D/A conversions. The AD1847 is connected to
serial port 0 (SPORT0). The internal memory of the ADSP-2181
(16K words of program memory and 16K words of data memory) is all
that is needed so that no external memory is connected. The signals of
serial port 1 (SPORT1) are used to communicate via the RS-232
interface.

Step 3: Architecture Description FileStep 3: Architecture Description FileStep 3: Architecture Description FileStep 3: Architecture Description FileStep 3: Architecture Description File
When using the ADSP-2100 family development tools, the hardware
system needs to be described in an architecture description file. Since
the ADSP-2181 system is already defined, this step has been already
done for you. A file called ADSP2181.ACH (file produced by the
System Builder) is included in the EZ-KIT Lite software. The text file
shown below contains the architecture description of a typical ADSP-
2181 system and is used as input for the System Builder.

.system demo;

.adsp2181;

.mmap0;

.seg/pm/ram/abs=0/code/data int_pm_lo[8192];

.seg/pm/ram/abs=8192/code/data int_pm_hi[8192];

.seg/dm/ram/abs=0/data int_dm_lo[8192];

.seg/dm/ram/abs=8192/data int_dm_hi[8160];

.endsys;

55555DSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System Development

5 – 35 – 35 – 35 – 35 – 3

The first three lines of the file defines the name of the system as demo
using an ADSP-2181 with its EPROM boot feature enabled (MMAP pin
tied low).

The 16K word internal program memory is described as two 8K word
segments which can contain code as well as data. The first 8K word
section will always be internal to the ADSP-2181. The second 8K word
section can be programmed with an ADSP-2181 instruction (sets
PMOVLAY modes) to be either internal or external overlay. Describing
the architecture as two sections of memory will simplify memory
management for applications that may use added external memory.
The memory can also be described as a single 16K word section instead
of the two 8K word sections.

Data memory is described as two sections as is the program memory.
The 32 words at the end of data memory are reserved for the memory
mapped control registers inside the ADSP-2181.

This text file (.SYS file) is used as input to the System Builder to create
a .ACH file. The .ACH file is used by the Linker and the Simulator to
flag inconsistencies between the software and use of the hardware. An
architecture file called ADSP2181.ACH is supplied with the ADSP-
2181 EZ-KIT Lite software. You would need to obtain the System
Builder if you wish to define a different architecture. You can upgrade
your system by purchasing the ADDS-21XX-SW-PC development
system. This system contains the System Builder as well as a number
of additional software tools and libraries.

Step 4: Code DevelopmentStep 4: Code DevelopmentStep 4: Code DevelopmentStep 4: Code DevelopmentStep 4: Code Development
Once the hardware is determined (or you feel comfortable with the
approximation you have made of the hardware needs), you can begin
to develop the software. First, determine all the memory requirements
for variables and arrays along with all the needed interrupts for the
ADSP-2181 system. Any hardware or registers that need to be
initialized should also be planned out.

You will write a program by entering text (assembly language
instructions) into a text file and then processing the text file with the
assembler. The Assembler translates the processor’s algebraic, easy-to-
read instruction set from your source file into a relocatable object file.
There are a few things that you need to know, however, about the

55555 DSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System Development

5 – 45 – 45 – 45 – 45 – 4

ADSP-2100 family assembly language. The algebraic syntax uses the '='
symbol to represent a data transfer. For example, the instruction

AX0 = MX0;

transfers data from the register called MX0 into the register called AX0.
The arithmetic symbols that you are already familiar with (+, -, *) are
used to denote arithmetic operations. For example, the instruction

AR = AX0 + AY0;

adds the contents of register AX0 to the contents of register AY0 and
places the sum into register AR.

All instructions must end with a ';' and instructions can be made up of
several “clauses” which are separated by a ','.

The following is an example of a multifunction instruction for the
ADSP-21xx processors.

MR=MR+MX1*MY1(SU), MX1=DM(I0,M3), MY1=PM(I4,M5);

The first “clause” of the instruction (up to the first comma) is the
multiply/accumulate (MAC) operation. The contents of the input
registers MX1 and MY1 are multiplied together and added to the
contents of the multiplier result register. The second clause loads the X
input register from data memory (DM) and the third clause loads the Y
input from program memory (PM). The I registers are used to hold
addresses and the M registers hold the value used to modify the
address after the fetch. All instructions can execute in a single
processor cycle. Most instructions are also conditional.

Declaration of any variables, arrays or constants as well as the
specification of any include files or ports are made in the front of the
program using the assembler directives. Examples of some assembler
directives are shown in the listing below.

After system reset, the ADSP-2181 will begin executing code from
program memory location 0. As you can see in the listing below,
location 0 contains an instruction jump start . This is used to jump
over the interrupt vector table.

55555DSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System Development

5 – 55 – 55 – 55 – 55 – 5

When an interrupt occurs during ADSP-2181 operation, the program
flow will be redirected to the locations shown in the listing below. This
jump is done automatically by the hardware when an interrupt is
detected. The code segment shown below includes the interrupt vector
table and will reside in the first 48 locations of program memory. The
hexadecimal memory locations are shown for convenience in the
comment field. The Linker will take care of memory address values for
you.

You should fill unused interrupt locations with the rti instruction.
This is done for safety. If for some reason program memory gets
corrupted or program flow gets “lost” in the interrupt vector table, the
return from interrupt instruction (rti) will bring program flow back
into the program.

The following code example initializes all the EZ-KIT Lite hardware
and will take the analog input samples and simply output them. The
signal at the input connector is just passed to the output connector.
You can take this code and insert a signal processing algorithm. The
code is commented where the input samples are read and where the
output samples are written.

.module/RAM/ABS=0 my_program;

{******** Constant Declarations ******}
{memory mapped ADSP-2181 control registers }
.const IDMA= 0x3fe0;
.const BDMA_BIAD= 0x3fe1;
.const BDMA_BEAD= 0x3fe2;
.const BDMA_BDMA_Ctrl= 0x3fe3;
.const BDMA_BWCOUNT= 0x3fe4;
.const PFDATA= 0x3fe5;
.const PFTYPE= 0x3fe6;
.const SPORT1_Autobuf= 0x3fef;
.const SPORT1_RFSDIV= 0x3ff0;
.const SPORT1_SCLKDIV= 0x3ff1;
.const SPORT1_Control_Reg= 0x3ff2;
.const SPORT0_Autobuf= 0x3ff3;
.const SPORT0_RFSDIV= 0x3ff4;
.const SPORT0_SCLKDIV= 0x3ff5;
.const SPORT0_Control_Reg= 0x3ff6;
.const SPORT0_TX_Channels0= 0x3ff7;
.const SPORT0_TX_Channels1= 0x3ff8;
.const SPORT0_RX_Channels0= 0x3ff9;

(listing continues on next page)

55555 DSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System Development

5 – 65 – 65 – 65 – 65 – 6

.const SPORT0_RX_Channels1= 0x3ffa;

.const TSCALE= 0x3ffb;

.const TCOUNT= 0x3ffc;

.const TPERIOD= 0x3ffd;

.const DM_Wait_Reg= 0x3ffe;

.const System_Control_Reg= 0x3fff;

{**** Variable and Buffer Declarations ******}
.var/dm/ram/circ rx_buf[3]; /* AD1847 receive buffer */
.var/dm/ram/circ tx_buf[3]; /* AD1847 transmit buffer */
.var/dm/ram/circ init_cmds[13];
.var/dm stat_flag;

{***** Variable and buffer initialization ******}
.init tx_buf: 0xc000, 0x0000, 0x0000;
.init init_cmds:
 0xc003, {AD1847 Left input control reg}
 0xc103, {AD1847 Right input control reg}
 0xc288, {AD1847 left aux 1 control reg}
 0xc388, {AD1847 right aux 1 control reg}
 0xc488, {AD1847 left aux 2 control reg}
 0xc588, {AD1847 right aux 2 control reg}
 0xc680, {AD1847 left DAC control reg}
 0xc780, {AD1847 right DAC control reg}
 0xc85b, {AD1847 data format register}
 0xc909, {AD1847 interface configuration reg}
 0xca00, {AD1847 pin control reg}
 0xcc40, {AD1847 miscellaneous information reg}
 0xcd00; {AD1847 digital mix control reg}

{******* Interrupt Vector Table ******}
 jump start; {Location 0000: reset }

rti;
rti;
rti;

rti; {Location 0004: IRQ2 }
rti;
rti;
rti;

rti; {Location 0008: IRQL1 }
rti;
rti;
rti;

rti; {Location 000C: IRQL0 }
rti;
rti;
rti;

55555DSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System Development

5 – 75 – 75 – 75 – 75 – 7

ar = dm(stat_flag); {Location 0010: SPORT0 tx }
ar = pass ar;
if eq rti;
jump next_cmd;

jump input_samples; {Location 0014: SPORT0 rx }
rti;
rti;
rti;

rti; {Location 0018: IRQE }
rti;
rti;
rti;

rti; {Location 001C: BDMA }
rti;
rti;
rti;

rti; {Location 0020: SPORT1 tx or IRQ1 }
rti;
rti;
rti;

rti; {Location 0024: SPORT1 rx or IRQ0 }
rti;
rti;
rti;

rti; {Location 0028: timer }
rti;
rti;
rti;

rti; {Location 002C: power down }
rti;
rti;
rti;

{******** ADSP 2181 intialization ********}
start:
 i0 = ^rx_buf; {init. address pointer to start of buffer }
 l0 = %rx_buf; {init. length register to size of buffer}
 i1 = ^tx_buf;
 l1 = %tx_buf;
 i3 = ^init_cmds;
 l3 = %init_cmds;
 m1 = 1;

(listing continues on next page)

55555 DSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System Development

5 – 85 – 85 – 85 – 85 – 8

{***** Serial Port 0 (SPORT0) Set Up *****}
 ax0 = b#0000001010000111;

dm (SPORT0_Autobuf) = ax0;

ax0 = 0;
dm (SPORT0_RFSDIV) = ax0;
dm (SPORT0_SCLKDIV) = ax0;
ax0 = b#1000011000001111;
dm (SPORT0_Control_Reg) = ax0;

ax0 = b#0000000000000111;
dm (SPORT0_TX_Channels0) = ax0;

ax0 = b#0000000000000111;
dm (SPORT0_TX_Channels1) = ax0;

ax0 = b#0000000000000111;
dm (SPORT0_RX_Channels0) = ax0;

ax0 = b#0000000000000111;
dm (SPORT0_RX_Channels1) = ax0;

{***** Serial Port 0 (SPORT0) Set Up *****}
ax0=0;
dm(SPORT1_Autobuf)=ax0; { autobuffering disabled }
dm(SPORT1_RFSDIV)=ax0; { RFSDIV not used }
dm(SPORT1_SCLKDIV)=ax0; { SCLKDIV not used }
dm(SPORT1_Control_Reg)=ax0; { ctrl functions disabled }

{****** Timer Setup *****}
ax0=0;
dm(TSCALE)=ax0; { timer not being used }
dm(TCOUNT)=ax0;
dm(TPERIOD)=ax0;

{****** System and Memory Set Up ******}
ax0 = b#0000000000000000;
dm (DM_Wait_Reg) = ax0;

ax0 = b#0001000000000000; { enable SPORT0 }
dm (System_Control_Reg) = ax0;

ifc = b#00000011111111; { clear pending interrupt }
nop;

icntl = b#00000;
mstat = b#1000000;

55555DSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System Development

5 – 95 – 95 – 95 – 95 – 9

{***** AD1847 Codec intialization *******}

 ax0 = 1;
 dm(stat_flag) = ax0; { clear flag }
 imask = b#0001000000; {enable transmit interrupt }
 ax0 = dm (i1, m1); { start interrupt }
 tx0 = ax0;

check_init:
 ax0 = dm (stat_flag); { wait for entire init }
 af = pass ax0; { buffer to be sent to }
 if ne jump check_init; { the codec }

 ay0 = 2;

check_acih:
 ax0 = dm (rx_buf); { once initialized, wait }
 ar = ax0 and ay0; { for codec to come out }
 if eq jump check_acih; { of autocalibration }

check_acil:
 ax0 = dm (rx_buf); { once initialized, wait }
 ar = ax0 and ay0; { for codec to come out }
 if ne jump check_acil; { of autocalibration }

 idle;

 ay0 = 0xbf3f; { unmute left DAC }
 ax0 = dm (init_cmds + 6);
 ar = ax0 AND ay0;
 dm (tx_buf) = ar;
 idle;

 ax0 = dm (init_cmds + 7); { unmute right DAC }
 ar = ax0 AND ay0;
 dm (tx_buf) = ar;
 idle;

 ax0 = 0xc901; {clear autocalibration request}
 dm (tx_buf) = ax0;
 idle;
 ax1 = 0x8000; {control word to clear over-range flags}
 dm (tx_buf) = ax1;

 ifc = b#00000011111111; {clear any pending interrupt}
 nop;

 imask = b#0000100000; { enable rx0 interrupt }

(listing continues on next page)

55555 DSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System Development

5 – 105 – 105 – 105 – 105 – 10

{***** wait for interrupt and loop forever *****}

talkthru: idle;
 jump talkthru;

{****** Interrupt service routines *******}

{***** receive interrupt used for loopback *****}
input_samples:
 ena sec_reg; {use shadow register bank}

 ax1 = dm (rx_buf + 1); {get data from codec}
 mx1 = dm (rx_buf + 2);

{***** Put your code here to process samples received from
 CODEC. Left channel data is in register ax1 and
 right channel data is in register mx1. ********}

 dm (tx_buf + 1) = ax1; {send data to codec}
 dm (tx_buf + 2) = mx1;

 rti;

{***** transmit interrupt used for Codec initialization *****}
next_cmd:
 ena sec_reg;
 ax0 = dm (i3, m1); { fetch next control word and }
 dm (tx_buf) = ax0; { place in transmit slot 0 }
 ax0 = i3;
 ay0 = ^init_cmds;
 ar = ax0 - ay0;
 if gt rti; { rti if more control words }
 ax0 = 0x8000; { else set done flag and }
 dm (tx_buf) = ax0; { remove MCE if done with init }
 ax0 = 0;
 dm (stat_flag) = ax0; { reset status flag }
 rti;

.endmod;

55555DSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System Development

5 – 115 – 115 – 115 – 115 – 11

Step 6: Running The AssemblerStep 6: Running The AssemblerStep 6: Running The AssemblerStep 6: Running The AssemblerStep 6: Running The Assembler
After you have finished creating the text file which contains the
assembly language program, you can run the assembler with the
following command.

asm21 my_prog -2181

In this example, the text file I created is named my_prog.dsp . The
-2181 switch tells the assembler to accept ADSP-2181 specific
instructions. The assembler creates the appropriate object code file or
files. There are a number of assembler switches that can be optionally
used for functions like list file creation, case sensitivity and object file
naming. Here is another example which specifies the creation of a
listing file which will be called my_prog.lst .

asm21 my_prog -2181 -l

If you type the command asm21 followed by a carriage return (no
arguments used), the proper use of the command and all the switches
will be listed on the screen. The assembler creates an object file with
the extension .obj on the file name. The example command shown
above creates the file my_prog.obj .

Step 7: Running The LinkerStep 7: Running The LinkerStep 7: Running The LinkerStep 7: Running The LinkerStep 7: Running The Linker
The linker creates an executable file from the object modules created
by the assembler. The following example creates a file called
demo.exe .

ld21 my_prog -a adsp2181 -e demo

The architecture description file adsp2181.ach is specified with the
-a switch and the executable file name is specified as demo.exe
with the -e switch. There are a number of other switches that are
used to create a symbol table, create a map file and specify the object
files indirectly (specify a file name where the file contains a list of all
the .obj files to be linked). If you type the command ld21
followed by a carriage return (no arguments used), the proper use of
the command and all the switches will be listed on the screen.

55555 DSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System Development

5 – 125 – 125 – 125 – 125 – 12

Step 8: Running The SimulatorStep 8: Running The SimulatorStep 8: Running The SimulatorStep 8: Running The SimulatorStep 8: Running The Simulator
The simulator lets you run your code in a simulation environment to
test your software without using an actual hardware system. The
simulation step is used to make sure your software works before you
run it on your hardware.

Many time a problem can arise where you load your software on to the
hardware and it doesn’t work. Without verifying your program’s
operation on the simulator, you can not be sure whether the failure is
related to hardware or software. If you have verified the operation of
your software on the simulator then download the code to your
hardware and it doesn’t work, it most likely is due to faulty hardware.
The simulator is invoked as follows:

sim2181 -a adsp2181 -e demo

This command starts the ADSP-2181 simulator, simulating the
program demo.exe on the hardware described in the architecture
description file adsp2181.ach . If the simulator can not find some of
these files, you may want to check your path statement in the
autoexec.bat or you can specify the full path as follows:

sim2181 -a c:\adi_dsp\21xx\lib\adsp2181 -e demo

Step 9: Programming An EPROMStep 9: Programming An EPROMStep 9: Programming An EPROMStep 9: Programming An EPROMStep 9: Programming An EPROM
Once you have verified that your software works you can format the
executable so that it can be programmed into an EPROM. The EPROM
can then be inserted into the EPROM socket on the board to run your
program. The Prom Splitter can be invoked with the following
command:

spl21 demo demoprom -loader -2181

This will take the executable file demo.exe and create a PROM file
called demoprom.bnm . The default PROM format is the Motorola S
record format. You can specify the Intel Hex record format with the
-i switch. The file created by the example command shown above is
demoprom.bnm . This file can be downloaded to a PROM programmer
to program an EPROM which can be inserted into the EPROM socket
on the EZ-KIT Lite board.

55555DSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System DevelopmentDSP System Development

5 – 135 – 135 – 135 – 135 – 13

Upon power up reset or when you hit the reset button on the board,
the contents of the EPROM is automatically loaded into the internal
program and data memories of the ADSP-2181 and coded execution
begins.

Step 10: Running The ADSP-2181 EZ-KIT Lite BoardStep 10: Running The ADSP-2181 EZ-KIT Lite BoardStep 10: Running The ADSP-2181 EZ-KIT Lite BoardStep 10: Running The ADSP-2181 EZ-KIT Lite BoardStep 10: Running The ADSP-2181 EZ-KIT Lite Board
The EZ-KIT Lite board has an EPROM on it which contains ADSP-2181
code. When the board is powered up (or reset) the code is
automatically transferred from the EPROM into the internal memory
of the ADSP-2181. The code shipped with the EZ-KIT Lite includes a
monitor program which allows the ADSP-2181 to communicate with
the RS-232 interface. The code performs a self test and then sends an
audio signal to the audio output connector. You will need to have a set
of powered speakers attached to the audio output connector to hear
the sound produced. The signal at this connector is a line level so you
will need a set of speakers that have an amplifier in them such as the
model CS-180 from Labtec.

Once you install the host software onto your PC you should be able to
run the host program under Windows. You can then down load an
executable file (.exe file produced by the linker). You should refer to
the sections of this manual that describe installation in more detail.

If you prefer, you can program your own EPROM and insert it into the
EPROM socket on the EZ-KIT Lite board to run your own program in
stand alone mode.

Step 11: DebuggingStep 11: DebuggingStep 11: DebuggingStep 11: DebuggingStep 11: Debugging
In general, if your EZ-KIT Lite board is not operating properly with
the programs provided there is probably a problem with the power
connection, the connection to the host PC via the RS-232 cable, or a
problem with the components on the board. In general make sure that
all connections are made tightly and that the power supply voltage is
in the proper range (8 VDC to 10 VDC). Also make sure that the
EPROM is seated properly in the socket. Finally, make sure that no
objects are resting on the board or beneath the board causing a short
circuit. When in doubt, press the reset button.

In general, if the software you develop does not work you should
simulate it to try to find the problem. There are a number of example
programs shipped with the EZ-KIT Lite. Use these as a basis to create
your own programs. More detail on debugging is found throughout
this manual.

66666

6 – 16 – 16 – 16 – 16 – 1

EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

PROGRAM OVERVIEWPROGRAM OVERVIEWPROGRAM OVERVIEWPROGRAM OVERVIEWPROGRAM OVERVIEW
The EZ-KIT Lite Host Program is a Windows-based application
program following standard Windows Graphical User Interface
conventions. This is the application program you use to communicate
with the EZ-LAB board. With it you can run EZ-KIT Lite
demonstration programs, upload/download program and data
memory contents, download user DSP programs, and execute user
DSP programs. The following screen shows the main menu of the Host
Program.

66666 EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 26 – 26 – 26 – 26 – 2

COMMAND SUMMARYCOMMAND SUMMARYCOMMAND SUMMARYCOMMAND SUMMARYCOMMAND SUMMARY
By pointing and clicking on menu items, you can select from the many
commands available. This chapter describes in detail each of these
commands. The following commands are available.

- DTMF
run the DTMF demonstration program

- Filtering
run the filtering demonstration program

- Echo Cancellation
run the echo cancellation demonstration program

- Speech Compression
run the LPC and ADPCM speech compression demonstration
programs

- Download DSP program & Go
download user programs and begin execution

- Download DSP program
download user programs but do not start execution, also
download memory image files

- Go
begin execution from a given address

- Upload data memory
upload a block of memory into a memory image file

- Upload program memory
upload a block of memory into a memory image file

- Download data memory
download a data memory image file to a given address

- Download program memory
download a program memory image file to a given address

- About
The last line in the dialog box indicates whether serial
communication is established.

66666EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 36 – 36 – 36 – 36 – 3

DETAILED COMMANDSDETAILED COMMANDSDETAILED COMMANDSDETAILED COMMANDSDETAILED COMMANDS
All commands are available via the standard menu bar selections and
their drop-down menu items. You will notice that in addition to the
standard Windows menu bar selections such as ‘File’ and ‘Help,’ there
are some EZ-KIT Lite related items. All menu options are described in
detail in the following sections.

File MenuFile MenuFile MenuFile MenuFile Menu
Since no information is retained in memory, the standard file save and file
open commands are not applicable. There is only one command under the
‘File’ heading.

- Exit
Make this selection if you want to exit the EZ-KIT Host Program.

66666 EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 46 – 46 – 46 – 46 – 4

View MenuView MenuView MenuView MenuView Menu
The View menu deals with the Toolbar and the Status Bar.

ToolbarToolbarToolbarToolbarToolbar
Selection of this feature will remove the check mark and remove the
Toolbar near the top of the main window. Repeat to replace the check
mark and bring back the Toolbar.

Toolbar is the gray bar immediately below the menu bar with several
small square buttons on the left hand side. These buttons provide
alternate quick access to useful commands. Simply click on these buttons
with a mouse instead of selecting the drop down menu and select the
corresponding menu items. A description follows.

- Download user program & Go
It is the first button from the left with the symbol of an opened folder. This
button selects the corresponding menu selection under ‘Loading’ menu. It
will download a user program and start user program execution. Select an
ADSP-2181 executable file with a .exe extension. This is an executable file
that is created by the ADSP-2181 linker.

- About EzkitApp
It is the second button from the left with a question mark. This button
selects the corresponding menu selection under ‘Help’ menu. It displays
the About dialog box.

66666EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 56 – 56 – 56 – 56 – 5

The useful item in the About dialog box is the last line in the dialog box. If
the Host Program is able to communicate with the EZ-KIT monitor
program the last line will read ‘EZ-KIT monitor is alive and well.’
Otherwise the line will read ‘EZ-KIT monitor is not running; try reset.’
You may try to push the reset button on the EZ-KIT Lite board to re-
activate the resident monitor.

- Download program memory
It is the third button from the left with the letter ‘P’ and a downward
pointing arrow. This button selects the corresponding menu selection
under ‘Loading’ menu. It will download a program memory image from a
file to the DSP program memory at the specified starting address. You will
need to select the Go command to run the program. Please see the
corresponding section under ‘Loading’ menu for more detail.

- Download data memory
It is the fourth button from the left with the letter ‘D’ and a downward
pointing arrow. This button selects the corresponding menu selection
under ‘Loading’ menu. It will download a data memory image from a file
to the DSP data memory starting from a user specified memory location.
Please see the corresponding section under ‘Loading’ menu for more
detail.

- Upload program memory
It is the fifth button from the left with the letter ‘P’ and a upward pointing
arrow. This button selects the corresponding menu selection under
‘Loading’ menu. It will upload a program memory image from the DSP
program memory to a file. You specify the specified starting address and
the number of program memory locations to be transferred. Please see the
corresponding section under ‘Loading’ menu for more detail.

- Upload data memory
It is the sixth button from the left with the letter ‘D’ and a upward
pointing arrow. This button selects the corresponding menu selection
under ‘Loading’ menu. It will upload a data memory image from the DSP
data memory to a file. You specify the specified starting address and the
number of data memory locations to be transferred. Please see the
corresponding section under ‘Loading’ menu for more detail.

66666 EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 66 – 66 – 66 – 66 – 6

Status BarStatus BarStatus BarStatus BarStatus Bar
Selection of this option will remove the check mark and remove the Status
Bar near the bottom of the main window. Repeat to replace the check
mark and bring back the Status Bar.

When a menu bar selection is highlighted, a more detailed description of
the currently highlighted menu selection is given in the Status Bar.

Demo MenuDemo MenuDemo MenuDemo MenuDemo Menu
From the menu options, select one of the available demonstration
programs to run on the EZ-KIT Lite. These demos may also be selected
directly from the floating buttons. Please refer to the corresponding
section for more detailed information.

DTMFDTMFDTMFDTMFDTMF
Selects the DTMF DSP demo program. This demonstration generates
Dual-Tone Multi-Frequency (DTMF) tones, as used in the telephone
network for push-button signaling. A DTMF tone is composed of two
different single frequency tones - one of four row tones added to one of
four column tones. Thus, a full implementation of a DTMF standard tone
generator can generate 16 different tones (only 12 are commonly used on
consumer handsets).

66666EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 76 – 76 – 76 – 76 – 7

When selected the Windows Application Interface will download the
necessary DSP program to the EZ-KIT LITE resulting in the following
dialog box.

When it outputs a DTMF tone, EZ-KIT generates the two requisite sine
waves, scales them and adds them, and then outputs the result to the
codec for conversion to an analog signal. At the start of this program,
EZ-KIT generates a dial tone to the output speaker. The following
selections are possible.

- Generate dial tone
This selection may be selected by clicking the corresponding radio button
or typing the letter ‘t.’ A standard dial tone which is a sum of continuous
sine waves is generated.

- Generate DTMF digits
This option may be selected by clicking the corresponding radio button or
typing the letter ‘d.’ The phone number of an Analog Devices DSP
applications engineer is programmed into the demo program. Make this
selection to generate the phone number. If you hold an off-hook telephone
handset to the output speaker, the DTMF tones will tell the network call
switching apparatus to connect you to the applications engineer. Do this
only if you want to make a call.

- Close
This option terminates the demonstration program and restores the
EZ-KIT resident monitor program before returning the user to the top
menu bar selection. This allows a new demonstration to be selected.

66666 EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 86 – 86 – 86 – 86 – 8

FilteringFilteringFilteringFilteringFiltering
Selects the FIR Filtering DSP demo program. This program demonstrates
the effect of four bandpass filters against no filter on microphone input or
an internally generated noise source.

When selected the Windows Application Interface will download the
necessary DSP program to the EZ-KIT Lite and display the following
dialog box.

This demonstration starts with a talk-through program. The AD1847
codec digitizes the analog microphone input and transmits the data to the
DSP’s serial port. The DSP reads data from the serial port and retransmits
the data back to the codec. The codec converts the data to an analog signal
that drives the speaker. No digital processing is performed on the data.
When you speak into the microphone, you should hear your voice
through the speaker.

The top row radio buttons use voice input from the microphone.

The filters have equivalent bandwidth and are evenly spaced on a
logarithmic frequency axis. All FIR filters are 256 taps, and have been
designed for 0.1 ripple.
FIR Filter Lower Stop Band Pass band Upper Stop Band
FIR Filter Lower Stop Band Pass Band Upper Stop Band

FIR1 0 - 269 Hz 328 - 448 Hz 547 - 4000 Hz
FIR2 0 - 426 Hz 521 - 710 Hz 866 - 4000 Hz
FIR3 0 - 675 Hz 825 - 1125 Hz 1375 - 4000 Hz
FIR4 0 - 1070 Hz 1308 - 1783 Hz 2179 - 4000 Hz

The bottom rows radio buttons use random noise as inputs.

66666EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 96 – 96 – 96 – 96 – 9

- Close
This option terminates the demonstration program and restores the
EZ-KIT resident monitor program before returning the user to the top
menu bar selection. This allows a new demonstration to be selected.

Echo CancellationEcho CancellationEcho CancellationEcho CancellationEcho Cancellation
Selects the Echo Canceller DSP demo program. This program
demonstrates echo cancellation on a simulated echoing channel.

The AD1847 codec digitizes the analog microphone input and transmits
the data to the DSP’s serial port. The DSP internally generates an echoed
signal by summing the serial input with the output of a simulated echo
channel. The echo channel consists of a linear delay implemented as a
long FIR filter with zero-value tap weights and a 16-tap dispersive FIR
filter. The echo canceled output is sent to the codec for reconstruction.

When selected the Windows Application Interface will download the
necessary DSP program to the EZ-KIT Lite resulting in the following
dialog box.

Initially the program sends the echoed output to the codec without echo
cancellation. The following selections are possible.

- Next
When this button is depressed for the first time the program enters echo
cancellation mode. The dialog box shown on the following page. There
will be a significant reduction in echo. Further depression of the button
will change the position of the dispersive filter and will force the filter to
adapt to a new echo path.

66666 EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 106 – 106 – 106 – 106 – 10

- Close
This option terminates the demonstration program and restores the
EZ-KIT resident monitor program before returning the user to the top
menu bar selection. This allows a new demonstration to be selected.

ADPCMADPCMADPCMADPCMADPCM
Selects the ADPCM DSP demo program. This program demonstrates
Adaptive Differential Pulse Code Modulation (ADPCM) capabilities.
ADPCM consists of a number of real-time speech compression algorithms.
For each sampling period it employs a linear predictive filter to generate a
predicted output. The difference between the predicted output and actual
sampled value is sent through the communication channel. Since the
dynamic range of the differential error is significantly lower than the
dynamic range of the voice signal, a lower bit rate results.

When selected the Windows Application Interface will download the
necessary DSP program to the EZ-KIT Lite resulting in the following
dialog box.

Initially the digitized microphone samples from the codec are sent directly
to the codec for reconstruction. The following selections are possible.

66666EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 116 – 116 – 116 – 116 – 11

- ADPCM coding
This option enables the ADPCM encoding/decoding feature. Each
digitized microphone sample from the codec is first encoded and then
decoded using ADPCM. After it is decoded, it is sent back to the codec for
reconstruction. The red LED will light up when ADPCM encoding is in
effect.

- Straight through
This option enables the straight through. The digitized microphone
samples from the codec are sent directly back to the codec for
reconstruction. The red LED will be off when straight through is in effect.

- Close
This option terminates the demonstration program and restores the
EZ-KIT resident monitor program before returning the user to the top
menu bar selection. This allows a new demonstration to be selected.

7.8k LPC7.8k LPC7.8k LPC7.8k LPC7.8k LPC
Selects the 7.8k LPC DSP demo program.

- Interrupt button on EZ-KIT Lite
Push the Interrupt button on EZ-KIT Lite to toggle between talk through
and 7.8k LPC encoding. The red LED will light up when LPC encoding is
in effect.

- Close
This option terminates the demonstration program and restores the
EZ-KIT resident monitor program before returning the user to the top
menu bar selection. This allows new a demonstration to be selected.

66666 EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 126 – 126 – 126 – 126 – 12

2.4k LPC2.4k LPC2.4k LPC2.4k LPC2.4k LPC
Selects the 2.4k LPC DSP demo program.

- Interrupt button on EZ-KIT Lite
Push the Interrupt button on EZ-KIT Lite to toggle between talk through
and 2.4k LPC encoding. The red LED will light up when LPC encoding is
in effect.

- Close
This option terminates the demonstration program and restores the
EZ-KIT resident monitor program before returning the user to the top
menu bar selection. This allows a new demonstration to be selected.

Floating MenuFloating MenuFloating MenuFloating MenuFloating Menu
Alternatively all the demo programs can be selected by clicking the
corresponding buttons in the following floating dialog box. This dialog
box may be turned on or off via the options menu described later.

66666EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 136 – 136 – 136 – 136 – 13

The extra button at the bottom of the dialog box provides an alternative
and quick way of exiting the Window Application Interface program.

Loading MenuLoading MenuLoading MenuLoading MenuLoading Menu
These menu selections deal with the uploading and downloading of
memory contents including user programs.

Download User Program and GoDownload User Program and GoDownload User Program and GoDownload User Program and GoDownload User Program and Go
When selected the following dialog box appears.

66666 EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 146 – 146 – 146 – 146 – 14

Selects a memory image file (*.exe) for downloading. Program memory
and data memory images will be downloaded to locations specified in the
memory image file kernel in the corresponding memory space. The
monitor then transfers DSP execution to the newly downloaded program.

All user interrupt vectors will be directed to a special temporary buffer to
enable the monitor to function. When the monitor is finally issued a
command to execute user program, the redirected user interrupt vectors
will be copied from the temporary buffer to the intended locations.

Interrupts are disabled before entering the user program. All user
interrupts are masked using the DIS INTS instruction. The mask is also set
to 0 and the timer is disabled.

The first location of the program memory image kernel encountered in the
memory image file is used as the entry point to the user program. The
monitor performs a subroutine call to that location. The user program
should execute an RTS instruction to return to the monitor. Upon re-
entering the monitor program all interrupt vectors are restored to the
contents prior to the user program being downloaded to enable the
monitor to continue to function. Alternatively, the user can set up the
BDMA to simulate a power up BDMA boot load thus reloading the
monitor program from the EPROM.

The monitor reserves certain memory locations. The user program should
not use these monitor reserved memory locations. Please refer to chapter
describing the EZ-KIT Lite Monitor Program for more details on reserved
memory.

66666EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 156 – 156 – 156 – 156 – 15

Download User ProgramDownload User ProgramDownload User ProgramDownload User ProgramDownload User Program
When selected the following dialog box appears.

Selects a memory image file (*.exe) file for downloading. The difference
between this option and the previous one is that this selection does not
transfer DSP execution to the downloaded program upon download
completion.

Upon download completion the monitor will continue to function. The
program's entry point is reported in the acknowledgment dialog box. User
program execution may be started by using the ‘Go’ command, described
immediately below.

For all other details please refer to the previous section for ‘Download
user program and Go.’

GoGoGoGoGo
When selected the following dialog box appears.

66666 EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 166 – 166 – 166 – 166 – 16

Enter a hexadecimal address as the starting address of user programs.
Valid address range is from 0x0000 to 0x37ff inclusive. Program memory
locations 0x3800 to 0x3fff are used to store the monitor code. Loading into
these locations will corrupt the monitor. For more details on user program
restrictions please refer to the reference manual for EZ-KIT Lite.

Upload Data MemoryUpload Data MemoryUpload Data MemoryUpload Data MemoryUpload Data Memory
When selected the following dialog box appears.

This command uploads a block of DSP program memory content to a
memory image (*.exe) file on the host computer. Specify in hexadecimal
the starting address and number of words. The resulting file may be
downloaded back into the program memory at any specified non-
restricted location. The file may also be examined by using any text editor.

You will get an error message if you entered an invalid hexadecimal
number or specified an invalid range of memory, e.g. starting address
plus number of words exceeds the memory range.

66666EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 176 – 176 – 176 – 176 – 17

Upload Program MemoryUpload Program MemoryUpload Program MemoryUpload Program MemoryUpload Program Memory
When selected the following dialog box appears.

This command uploads a block of DSP data memory content to a memory
image (*.exe) file on the host computer. Specify in hexadecimal the
starting address and number of words. The resulting file may be
downloaded back into the program memory at any specified non-
restricted location. The file may also be examined by using any text editor.

You will get an error message if you entered an invalid hexadecimal
number or specified an invalid range of memory, e.g. starting address
plus number of words goes beyond the end of memory.

66666 EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 186 – 186 – 186 – 186 – 18

Download Data MemoryDownload Data MemoryDownload Data MemoryDownload Data MemoryDownload Data Memory
When selected the following dialog box appears.

This command downloads a memory image (*.exe) file from the host
computer into DSP data memory starting from the specified hexadecimal
start address.

The first data memory image kernel in the image file will be downloaded.
The memory image file may be memory image file generated (uploaded)
by the Host Program or generated by the ADSP-21xx Linker. Since the
Host Program generated file will have only one corresponding memory
kernel, the entire file content will be downloaded. The linker generated
image file may have multiple program memory and data memory kernels.
Only the first data memory kernel will be downloaded and the rest will be
ignored.

Since the memory image file format is an ASCII text file with no checksum
information, it is possible to use an ASCII text editor to edit the memory
image file and alter, delete, or add entries. Please refer to the ADSP-2100
Family Assembler & Simulator Manual for the format definition.
However, as the format is rather straight forward, with a little inspection
and experimentation you may be able to do the modification without
referring to the manual.

66666EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 196 – 196 – 196 – 196 – 19

You will get an error message if you entered an invalid hexadecimal
number or specified an invalid range of memory, e.g. starting address
plus number of words goes beyond the end of memory.

DO NOT overwrite the monitor reserved memory locations.

Download Program MemoryDownload Program MemoryDownload Program MemoryDownload Program MemoryDownload Program Memory
When selected the following dialog box appears.

This command downloads a memory image (*.exe) file from the host
computer into DSP program memory starting from the specified
hexadecimal start address.

The first program memory image kernel in the image file will be
downloaded. The memory image file may be memory image file
generated (uploaded) by the Host Program or generated by the ADSP-
21xx Linker. Since the Host Program generated file will have only one
corresponding memory kernel, the entire file content will be downloaded.
The linker generated image file may have multiple program memory and
data memory kernels. Only the first program memory kernel will be
downloaded and the rest will be ignored.

66666 EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 206 – 206 – 206 – 206 – 20

Since the memory image file format is an ASCII text file with no checksum
information, it is possible to use an ASCII text editor to edit the memory
image file and alter, delete, or add entries. Please refer to the Cross-
Software Manual for the format definition. However, as the format is rather
straight forward, with a little inspection and experimentation you may be
able to do the modification without referring to the manual.

You will get an error message if you entered an invalid hexadecimal
number or specified an invalid range of memory, e.g. starting address
plus number of words goes beyond the end of memory.

DO NOT overwrite the monitor reserved memory locations.

Options MenuOptions MenuOptions MenuOptions MenuOptions Menu
These selections determine the operation of the Host Program.

66666EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 216 – 216 – 216 – 216 – 21

SettingsSettingsSettingsSettingsSettings
When selected the following dialog box appears.

Please select the corresponding serial communication port to which the
EZ-KIT Lite board is connected. This selection is saved in the
configuration file ‘ezkitapp.ini.’ However, it is not critical to have the
‘ezkitapp.ini’ file available; if the Host Program did not find the
configuration file it will bring this dialog box up to allow the user to make
a selection.

List Of DemosList Of DemosList Of DemosList Of DemosList Of Demos
When selected, the following dialog box appears.

66666 EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 226 – 226 – 226 – 226 – 22

Help MenuHelp MenuHelp MenuHelp MenuHelp Menu

About EZ-KITAbout EZ-KITAbout EZ-KITAbout EZ-KITAbout EZ-KIT
When selected the following dialog box appears.

The third line will indicate whether the Host Program could communicate
with the resident monitor. The line ‘EZ-KIT monitor is alive and well’ is
displayed if the host to monitor communication is functioning; otherwise
the line ‘EZ-KIT monitor is not running; try reset’ is displayed. Click ‘OK’
to remove the dialog box.

User Configurable SettingsUser Configurable SettingsUser Configurable SettingsUser Configurable SettingsUser Configurable Settings
Several operating aspects of the Host Program can be customized by
changing the initialization string in ‘EzkitApp.ini.’ Two of these are
automatically managed by the Host Program. The only one that may need
to be manually modified is the time-out duration for the dialog box. The
‘EzkitApp.ini’ is not critical to the functioning of the Host Program. If the
file is not found the Host Program simply uses default settings and
prompts the user for the correct serial communication port number.
Details follow.

66666EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 236 – 236 – 236 – 236 – 23

• [EZ-KIT Interface App]
This is the heading for the section and it should not be changed.

• PortNo=2
This is the serial communication port number. It is managed by the Host
Program and should not be changed.

• MessageTimeOut=5
This is the dialog box time out duration. The default value is five seconds.
Setting it to zero will disable the automatic time out feature. This is the
only setting that may require direct user modification.

• ShowFloatingDialogBox=1
This is the visibility of the floating dialog box. If this is 1 the floating
dialog will be visible when Host Program begins running. It is managed
by the Host Program and should not be changed.

Error Messages & TroubleshootingError Messages & TroubleshootingError Messages & TroubleshootingError Messages & TroubleshootingError Messages & Troubleshooting
Several error messages may be reported should there be any problems
encountered in communicating to the EZ-KIT Lite monitor program.
These error messages are described below.

This indicates that the resident monitor detected the indicated error
during its power up self test. Push the reset button on the EZ-KIT Lite
board and try again. A persistent problem may indicate the board is
defective.

66666 EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 246 – 246 – 246 – 246 – 24

This indicates that the Host Program has timed out waiting for the
monitor to respond. A possible cause is that the monitor reserved memory
locations may have been corrupted. Push the reset button on the EZ-KIT
Lite board and try again.

This indicates that the Windows Communication Module has reported an
error to the Host Program. A possible cause is conflict between Windows
applications. Close all other programs and try again. It will also help to
verify that the serial communication port selected is functioning by
temporarily reconfiguring the mouse driver to use this port.

This indicates that a checksum error has been detected. For all memory
transfers a checksum is computed for the block of memory content being
transferred by both the monitor and the Host Program. A possible cause is
excessive line or environment noise. If the problem persists try shortening
the length of the serial communication port cable. Also experiment with
the location of the EZ-KIT Lite board and your compter.

66666EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 256 – 256 – 256 – 256 – 25

This indicates that the Host Program is unable to ascertain the correct
functioning of the EZ-KIT Lite resident monitor program. A possible
cause is that the Host Program encountered problem with the Windows
Communication Module. Exit Windows and try again.

This is the catch-all error message. All other unknown errors result in this
message. A possible cause may be missing demo program images files,
corrupted files, and internal programming error.

This indicates the Host Program did not get a response from the monitor
program. A possible cause is that the EZ-KIT Lite board is not connected
to the selected serial port, or that another Windows application is using
the selected serial port. Close all other Windows applications and try
again.

66666 EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 266 – 266 – 266 – 266 – 26

This indicates that the User Program Image File being downloaded
contains memory initializations to the resident monitor reserved
memories. The download is aborted to protect the reserved memories.
Remove the offending memory initializations and try again.

RUNNING DEMOSRUNNING DEMOSRUNNING DEMOSRUNNING DEMOSRUNNING DEMOS
To run the Demonstration Programs first start the Host Program under
Windows.

The following instructions apply to the Demonstration Programs. Refer to
the section on the DEMO MENU for more detailed information.

• DTMF

• Filtering

• Echo Cancellation

• ADPCM

• 7.8k LPC

• 2.4k LPC

You can select a demo by clicking one of the buttons on the Floating Menu
or selecting the appropriate dropdown menu as described in the previous
sections. Once the demo program is loaded onto the EZ-KIT Lite board, it
begins to execute. A dialog box will appear with instructions on running
the demo. (See Demo Menu section).

66666EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 276 – 276 – 276 – 276 – 27

CREATING YOUR OWN PROGRAMSCREATING YOUR OWN PROGRAMSCREATING YOUR OWN PROGRAMSCREATING YOUR OWN PROGRAMSCREATING YOUR OWN PROGRAMS
The Host Program running on the PC communicates through the COM
port to the EZ-KIT Lite board. The commands sent by the host software to
the EZ-KIT Lite board and the response received by the host are described
in this chapter. All values are in binary format. Use this information if you
desire to create your own Host Program. The following are the serial
commands that EZ-KIT Lite understands.

1. Beep
 sent: $$$
 received: ok[led count][alive called count][selftest hi][selftest lo]
 [cmds4demo hi][cmds4demo lo]

 [led count] is the lower 8 bits of a counter incremented at 28800 rate.
 [alive called count] is incremented by one each time alive is called.
 [selftest hi][selftest lo] is the selftest result
 [cmds4demo hi][cmds4demo lo] is demo command variable
 sing/generate 1 kHz tone.

2. Alive inquiry
 sent: $OK
 received: ok[led count][alive called count][selftest hi][selftest lo]
 [cmds4demo hi][cmds4demo lo]

 [led count] is the lower 8 bits of a counter incremented at 28800 rate.
 [alive called count] is incremented by one each time alive is called.
 [selftest hi][selftest lo] is the selftest result
 [cmds4demo hi][cmds4demo lo] is demo command variable

3. upload DM
 sent: $UD[hi start][lo start][hi len][lo len]
 received: [hi][lo]...[hi sum][lo sum]

4. upload PM
 sent: $UP[hi start][lo start][hi len][lo len]
 received: [hi][mi][lo]...[hi sum][mi sum][lo sum]

66666 EZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host ProgramEZ-KIT Lite Host Program

6 – 286 – 286 – 286 – 286 – 28

5. download DM
 sent: $DD[hi start][lo start][hi len][lo len][hi][lo]...
 received: ![hi sum][lo sum]

6. download PM
 sent: $DP[hi start][lo start][hi len][lo len][hi][mi][lo]...
 received: ![hi sum][mi sum][lo sum]

7. Call subroutine
 sent: $GO[hi address][loaddress]
 received: ![hi address][loaddress]

77777

7 – 17 – 17 – 17 – 17 – 1

EZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor Program

PROGRAM OVERVIEWPROGRAM OVERVIEWPROGRAM OVERVIEWPROGRAM OVERVIEWPROGRAM OVERVIEW
The Monitor Program resides in an on-board EPROM. It is automatically
loaded into the on-chip program and data memories at reset. As soon as
the monitor begins execution it performs a self test of DSP registers, on-
chip memories, and a reset and initialization of AD1847 codec. It then
waits for commands via the RS-232 serial communication port. A codec
talk through routine is also running in an interrupt routine.

MONITOR FEATURESMONITOR FEATURESMONITOR FEATURESMONITOR FEATURESMONITOR FEATURES
This monitor has the following features.

• Power up self test
• AD1847 codec initialization and talk through
• 9600 bps UART emulation
• upload and download of both program and data memory contents via

serial link

RESTRICTIONSRESTRICTIONSRESTRICTIONSRESTRICTIONSRESTRICTIONS
In order to facilitate the function of the monitor, certain restrictions are
imposed on all user programs. These are hard restrictions because
violation will interfere with the proper downloading of the user
programs. These restrictions include the following.

• Reserved program memory 0x3800 to 0x3fff
This is where the monitor program resides. The user program should
not download into these locations. Any violation will destroy the
monitor resulting in incomplete user program download.

• Reserved data memory 0x3e00 to 0x3fdf
These are the monitor operating variables. User programs
downloading into these locations will interfere with the monitor
execution resulting in an incomplete user program download.

77777 EZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor Program

7 – 27 – 27 – 27 – 27 – 2

• Returning to the monitor
After the download of your program is complete, the monitor software
calls your code as a subroutine. Your code should end with an RTS
instruction to properly return to the monitor.

For user programs that do not return to the monitor there is no
restriction imposed after the program has been downloaded. In other
words, while the memory image file should not attempt to initialize
the reserved memories, the user program is nevertheless free to use
these memories after its execution.

CREATING YOUR OWN PROGRAMS TO BE USED WITH THE MONITORCREATING YOUR OWN PROGRAMS TO BE USED WITH THE MONITORCREATING YOUR OWN PROGRAMS TO BE USED WITH THE MONITORCREATING YOUR OWN PROGRAMS TO BE USED WITH THE MONITORCREATING YOUR OWN PROGRAMS TO BE USED WITH THE MONITOR
You can edit one of the example programs supplied or you can create
your own program using the development tools included in your EZ-KIT
Lite. See chapter 5 for more information. There are a few things to note
when developing programs that you want to run with the monitor.

User programs may use all non-reserved program memory and non-
reserved data memory. These are locations 0x0000 to 0x37ff for program
memory and locations 0x0000 to 0x3dff for data memory.

• Program entry point
User programs to be downloaded by the Host Program should have
their entry point at the beginning of the first program memory kernel.
This can be achieved by making the entry point the first instruction in
the module and specifying that module first during linking. In most
cases, your program will start at location 0x0000. You can use the
assembler directive .module/ram/abs=0 to specify this (see
examples).

• Interrupt enable
All interrupts are masked (by IMASK = 0.) before execution is
transferred to the user programs. This is so that the user program can
safely carry out initializations before it re-enables interrupts.

• Interrupt vectors
The user program must initialize all interrupt vectors it is using.
Interrupt IRQ1 can not be used in your program since it is dedicated to
the RS232 communications. You can place "dummy" RTI instructions
in your code at this interrupt vector (location 0x0020 through 0x0023).

77777EZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor Program

7 – 37 – 37 – 37 – 37 – 3

• Monitor commands
The source code for the monitor program is included in the directory
21XX\EZKITL\2181\MONITOR. You can edit the source code to
tailor the monitor to your needs. If you are going to edit the monitor,
you need to be aware of the commands the monitor responds to.

The monitor can respond to the following commands via the serial
communication link. It may be useful if you are interfacing the EZ-KIT
Lite via serial link to other than the Host Program. The commands are
the following.

0. This is the name of the command
received: specifies the code and data received from the host(sent by
the monitor). Unbracketed characters are sent exactly,; bracketed bytes
are the high order and low order byte of a 16-bit quantity, or the high,
middle, and lower order bytes of a 24-bit quantity.
sent: specifies the code and data sent to the host by the monitor.
Unbracketed characters are to be sent exactly as specified. Bracketed
bytes are the high order and low order byte of a 16-bit quantity, or the
high, middle, and lower order bytes of a 24-bit quantity.

1. Beep
received: $$$
sent: ok[led count][alive called count][selftest hi][selftest lo]

[led count] is the lower 8 bits of a counter incremented at a rate of
28800 per second. A stalled count indicates the timer interrupt is
probably not running.
[alive called count] is incremented by one each time this command or
the alive command is called.
[selftest hi][selftest lo] is the selftest result
A short tone will also be sent to the audio output by the monitor.

77777 EZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor Program

7 – 47 – 47 – 47 – 47 – 4

2. Alive inquiry
received: $OK
sent: ok[led count][alive called count][selftest hi][selftest lo]

[led count] is the lower 8 bits of a counter incremented at a rate of
28800 per second. A stale count indicates the timer interrupt is
probably not running.
[alive called count] is incremented by one each time this command or
the alive command is called.
[selftest hi][selftest lo] is the selftest result
This command is similar to the Beep command except no tone is
generated.

3. upload data memory content
received: $UD[hi start][lo start][hi len][lo len]
sent: [hi][lo]...[hi sum][lo sum]$!

[hi start][lo start] is the starting memory location
[hi len][lo len] is the number of words
[hi][lo]... are the memory contents starting from the first location.
[hi sum][lo sum] is a 16-bit checksum of the data sent by the monitor
program.

4. upload program memory content
received: $UP[hi start][lo start][hi len][lo len]
sent: [hi][mi][lo]...[hi sum][mi sum][lo sum]$!

[hi start][lo start] is the starting memory location
[hi len][lo len] is the number of words
[hi][mi][lo]... are the memory contents starting from the first
location.
[hi sum][mi sum][lo sum] is a 24-bit checksum of the data sent by the
monitor program.

77777EZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor Program

7 – 57 – 57 – 57 – 57 – 5

5. download data memory content
received: $DD[hi start][lo start][hi len][lo len][hi][lo]...
sent: ![hi sum][lo sum]

[hi start][lo start] is the starting memory location
[hi len][lo len] is the number of words
[hi][lo]... are the memory contents starting from the first location.
[hi sum][lo sum] is a 16-bit checksum of the data calculated and sent
by the monitor program.

6. download PM
receivedt: $DP[hi start][lo start][hi len][lo len][hi][mi][lo]...
sent: ![hi sum][mi sum][lo sum]

[hi start][lo start] is the starting memory location
[hi len][lo len] is the number of words
[hi][mi][lo]... are the memory content starting from the first location.
[hi sum][lo sum] is a 16-bit checksum of the data calculated and sent
by the monitor program.

7. Begin user program execution
received: $GO[hi address][loaddress]
sent: ![hi address][loaddress]

[hi address][loaddress] is the program entry point sent by the host to
the monitor program. It is also the address sent by the monitor
program back to the host for confirmation

DEBUGGINGDEBUGGINGDEBUGGINGDEBUGGINGDEBUGGING
The following techniques may be helpful in debugging user programs.

• SET FL1

• RESET FL1

• TOGGLE FL1

The FL1 LED is directly controlled by the DSP FL1 flag. These instructions
may be placed anywhere in the users program. These may be used to
provide a visual indication of the binary state of a variable, or whether a
certain section is executing.

77777 EZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor Program

7 – 67 – 67 – 67 – 67 – 6

For non time-critical programs, it is possible to provide information by
programming the FL1 to blink at different rates. For example the
following code blinks the flag at a certain rate. Change the counter value
for other rates.

 cntr = 80;
 do lp1 until ce;
 cntr = 50;
 do lp2 until ce;
 cntr = 12000;
 do lp3 until ce;
lp3: nop;
lp2: nop;
lp1: toggle fl1;

DSP MEMORIESDSP MEMORIESDSP MEMORIESDSP MEMORIESDSP MEMORIES
The user programs may store historical data in user program memory or
user data memory. This data may be retrieved after user programs have
returned control back to the Monitor program (by RTS).

The upload program memory or the upload data memory commands of
the host program may be used to retrieve this data.

77777

7 – 17 – 17 – 17 – 17 – 1

EZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor Program

PROGRAM OVERVIEWPROGRAM OVERVIEWPROGRAM OVERVIEWPROGRAM OVERVIEWPROGRAM OVERVIEW
The Monitor Program resides in an on-board EPROM. It is automatically
loaded into the on-chip program and data memories at reset. As soon as
the monitor begins execution it performs a self test of DSP registers, on-
chip memories, and a reset and initialization of AD1847 codec. It then
waits for commands via the RS-232 serial communication port. A codec
talk through routine is also running in an interrupt routine.

MONITOR FEATURESMONITOR FEATURESMONITOR FEATURESMONITOR FEATURESMONITOR FEATURES
This monitor has the following features.

• Power up self test
• AD1847 codec initialization and talk through
• 9600 bps UART emulation
• upload and download of both program and data memory contents via

serial link

RESTRICTIONSRESTRICTIONSRESTRICTIONSRESTRICTIONSRESTRICTIONS
In order to facilitate the function of the monitor, certain restrictions are
imposed on all user programs. These are hard restrictions because
violation will interfere with the proper downloading of the user
programs. These restrictions include the following.

• Reserved program memory 0x3800 to 0x3fff
This is where the monitor program resides. The user program should
not download into these locations. Any violation will destroy the
monitor resulting in incomplete user program download.

• Reserved data memory 0x3e00 to 0x3fdf
These are the monitor operating variables. User programs
downloading into these locations will interfere with the monitor
execution resulting in an incomplete user program download.

77777 EZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor Program

7 – 27 – 27 – 27 – 27 – 2

• Returning to the monitor
After the download of your program is complete, the monitor software
calls your code as a subroutine. Your code should end with an RTS
instruction to properly return to the monitor.

For user programs that do not return to the monitor there is no
restriction imposed after the program has been downloaded. In other
words, while the memory image file should not attempt to initialize
the reserved memories, the user program is nevertheless free to use
these memories after its execution.

CREATING YOUR OWN PROGRAMS TO BE USED WITH THE MONITORCREATING YOUR OWN PROGRAMS TO BE USED WITH THE MONITORCREATING YOUR OWN PROGRAMS TO BE USED WITH THE MONITORCREATING YOUR OWN PROGRAMS TO BE USED WITH THE MONITORCREATING YOUR OWN PROGRAMS TO BE USED WITH THE MONITOR
You can edit one of the example programs supplied or you can create
your own program using the development tools included in your EZ-KIT
Lite. See chapter 5 for more information. There are a few things to note
when developing programs that you want to run with the monitor.

User programs may use all non-reserved program memory and non-
reserved data memory. These are locations 0x0000 to 0x37ff for program
memory and locations 0x0000 to 0x3dff for data memory.

• Program entry point
User programs to be downloaded by the Host Program should have
their entry point at the beginning of the first program memory kernel.
This can be achieved by making the entry point the first instruction in
the module and specifying that module first during linking. In most
cases, your program will start at location 0x0000. You can use the
assembler directive .module/ram/abs=0 to specify this (see
examples).

• Interrupt enable
All interrupts are masked (by IMASK = 0.) before execution is
transferred to the user programs. This is so that the user program can
safely carry out initializations before it re-enables interrupts.

• Interrupt vectors
The user program must initialize all interrupt vectors it is using.
Interrupt IRQ1 can not be used in your program since it is dedicated to
the RS232 communications. You can place "dummy" RTI instructions
in your code at this interrupt vector (location 0x0020 through 0x0023).

77777EZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor Program

7 – 37 – 37 – 37 – 37 – 3

• Monitor commands
The source code for the monitor program is included in the directory
21XX\EZKITL\2181\MONITOR. You can edit the source code to
tailor the monitor to your needs. If you are going to edit the monitor,
you need to be aware of the commands the monitor responds to.

The monitor can respond to the following commands via the serial
communication link. It may be useful if you are interfacing the EZ-KIT
Lite via serial link to other than the Host Program. The commands are
the following.

0. This is the name of the command
received: specifies the code and data received from the host(sent by
the monitor). Unbracketed characters are sent exactly,; bracketed bytes
are the high order and low order byte of a 16-bit quantity, or the high,
middle, and lower order bytes of a 24-bit quantity.
sent: specifies the code and data sent to the host by the monitor.
Unbracketed characters are to be sent exactly as specified. Bracketed
bytes are the high order and low order byte of a 16-bit quantity, or the
high, middle, and lower order bytes of a 24-bit quantity.

1. Beep
received: $$$
sent: ok[led count][alive called count][selftest hi][selftest lo]

[led count] is the lower 8 bits of a counter incremented at a rate of
28800 per second. A stalled count indicates the timer interrupt is
probably not running.
[alive called count] is incremented by one each time this command or
the alive command is called.
[selftest hi][selftest lo] is the selftest result
A short tone will also be sent to the audio output by the monitor.

77777 EZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor Program

7 – 47 – 47 – 47 – 47 – 4

2. Alive inquiry
received: $OK
sent: ok[led count][alive called count][selftest hi][selftest lo]

[led count] is the lower 8 bits of a counter incremented at a rate of
28800 per second. A stale count indicates the timer interrupt is
probably not running.
[alive called count] is incremented by one each time this command or
the alive command is called.
[selftest hi][selftest lo] is the selftest result
This command is similar to the Beep command except no tone is
generated.

3. upload data memory content
received: $UD[hi start][lo start][hi len][lo len]
sent: [hi][lo]...[hi sum][lo sum]$!

[hi start][lo start] is the starting memory location
[hi len][lo len] is the number of words
[hi][lo]... are the memory contents starting from the first location.
[hi sum][lo sum] is a 16-bit checksum of the data sent by the monitor
program.

4. upload program memory content
received: $UP[hi start][lo start][hi len][lo len]
sent: [hi][mi][lo]...[hi sum][mi sum][lo sum]$!

[hi start][lo start] is the starting memory location
[hi len][lo len] is the number of words
[hi][mi][lo]... are the memory contents starting from the first
location.
[hi sum][mi sum][lo sum] is a 24-bit checksum of the data sent by the
monitor program.

77777EZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor Program

7 – 57 – 57 – 57 – 57 – 5

5. download data memory content
received: $DD[hi start][lo start][hi len][lo len][hi][lo]...
sent: ![hi sum][lo sum]

[hi start][lo start] is the starting memory location
[hi len][lo len] is the number of words
[hi][lo]... are the memory contents starting from the first location.
[hi sum][lo sum] is a 16-bit checksum of the data calculated and sent
by the monitor program.

6. download PM
receivedt: $DP[hi start][lo start][hi len][lo len][hi][mi][lo]...
sent: ![hi sum][mi sum][lo sum]

[hi start][lo start] is the starting memory location
[hi len][lo len] is the number of words
[hi][mi][lo]... are the memory content starting from the first location.
[hi sum][lo sum] is a 16-bit checksum of the data calculated and sent
by the monitor program.

7. Begin user program execution
received: $GO[hi address][loaddress]
sent: ![hi address][loaddress]

[hi address][loaddress] is the program entry point sent by the host to
the monitor program. It is also the address sent by the monitor
program back to the host for confirmation

DEBUGGINGDEBUGGINGDEBUGGINGDEBUGGINGDEBUGGING
The following techniques may be helpful in debugging user programs.

• SET FL1

• RESET FL1

• TOGGLE FL1

The FL1 LED is directly controlled by the DSP FL1 flag. These instructions
may be placed anywhere in the users program. These may be used to
provide a visual indication of the binary state of a variable, or whether a
certain section is executing.

77777 EZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor ProgramEZ-KIT Lite Monitor Program

7 – 67 – 67 – 67 – 67 – 6

For non time-critical programs, it is possible to provide information by
programming the FL1 to blink at different rates. For example the
following code blinks the flag at a certain rate. Change the counter value
for other rates.

 cntr = 80;
 do lp1 until ce;
 cntr = 50;
 do lp2 until ce;
 cntr = 12000;
 do lp3 until ce;
lp3: nop;
lp2: nop;
lp1: toggle fl1;

DSP MEMORIESDSP MEMORIESDSP MEMORIESDSP MEMORIESDSP MEMORIES
The user programs may store historical data in user program memory or
user data memory. This data may be retrieved after user programs have
returned control back to the Monitor program (by RTS).

The upload program memory or the upload data memory commands of
the host program may be used to retrieve this data.

88888

8 – 18 – 18 – 18 – 18 – 1

EZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite Hardware
DescriptionDescriptionDescriptionDescriptionDescription

DESIGN OVERVIEWDESIGN OVERVIEWDESIGN OVERVIEWDESIGN OVERVIEWDESIGN OVERVIEW
The hardware consists of a printed circuit board measuring 3.5 inches
by 5.5 inches. Assembled onto the printed circuit board are an ADSP-
2181 digital signal processor, an EPROM, an AD1847 codec and
various support circuits and connectors. The board is a complete signal
processing system designed to demonstrate the capabilities of the
ADSP-2181 digital signal processor. It can also be used as a platform to
develop new applications for the ADSP-2181.

Green
Power

LED

Red
Flag Out

LED

Stereo
Audio
Input

Stereo
Audio
Output

DC
Power Supply

Connector
Serial Port (RS232)

Connector

AD1847
Stereo
Codec

ADSP-2181
Digital
Signal

Processor

Socketed EPROM

J1

J2

LINE

MIC Input
Source
Selector

(Default Shown)

a

ADSP-2181
EZ-KIT LITE

JP2

JP1

U3

U7

U2

P3

P2

P1

EZ-ICE

In-Circuit
Emulator

Connector

EPROM
Configuration

Jumper

Expansion
Connectors

RESET INTERRUPT FL1

RESET
Button

Processor
Interrupt
Button

Pin 1

Pin 1

Pin 1

88888 EZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite Hardware
DescriptionDescriptionDescriptionDescriptionDescription

8 – 28 – 28 – 28 – 28 – 2

The EZ-KIT Lite board is an example of a minimum implementation of
an ADSP-2181 processor. The EPROM is connected to the processor via
the Byte DMA Port. This interface uses only eight of the 24 data lines to
carry data (D8 through D15). Eight of the spare data lines (D16
through D23) are used to provide additional address bits. This allows
the ADSP-2181 to address up to 32 M bits (4 M bytes) of memory. On
this board the EPROM socket is designed to accept EPROMs from
256K bits up to 8 M bits (the largest presently available). JP1 provides a
way to adjust the function of pins 3 and 30 of the socket as required by
the different size EPROMs. The DSP is configured to boot from the
EPROM when reset is deasserted.

The AD1847 codec is connected to the DSP via SPORT0. This high
speed synchronous serial port carries all of the data, control, and status
information between the DSP and the codec. It is possible to disable
the codec if the serial port is to be used for another purpose. The
CODECDIS signal available on connector P3 can be used to disable the
codec. When this signal is brought low, the codec is disabled and its
signals are put in a high impedance state.

The SPORT1 pins are used to communicate with the host PC via the
RS-232 interface (U5). The Flag In and Flag Out pins carry the receive
and transmit data. The receive data also goes to IRQ1 so the DSP can
detect activity without polling the Flag In pin. Software running on the
DSP emulates a UART to provide the proper protocol for
asynchronous serial communications at a data rate of 9600 bits per
second.

U1 is a logic device containing six inverters. Two of these inverters are
used to provide a power-on reset and to de-bounce the reset push
button. Another two inverters are used to de-bounce the interrupt
push button. A fifth inverter is used to drive the red LED (D1) because
the FL1 pin cannot sink enough current to drive it directly. The sixth
inverter is not used.

The IDMA port on the DSP is not used on the EZ-KIT Lite board. All of
the IDMA signals are available on connector P3.

88888EZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite Hardware
DescriptionDescriptionDescriptionDescriptionDescription

8 – 38 – 38 – 38 – 38 – 3

SPECIFICATIONSSPECIFICATIONSSPECIFICATIONSSPECIFICATIONSSPECIFICATIONS
Processor: ADSP-2181KS-133 operating at an

instruction rate of 33 MHz
(16.667 external clock)

Analog interface: AD1847 stereo codec

Analog inputs: One stereo pair of 2V RMS AC coupled line
level inputs
One stereo pair of 20mV RMS AC coupled
microphone inputs

Analog outputs: One stereo pair of 1V RMS AC coupled line
level outputs

Power: 8 to 10V DC at 300 mA

Environment: 0 to 70° centigrade
10 to 90 percent relative humidity (non
condensing)

CONNECTORSCONNECTORSCONNECTORSCONNECTORSCONNECTORS
J1 is a 1/8 inch (3.5 mm) stereo jack. This jack is used to bring either
line level or microphone audio signals into the board.

J2 is also a 1/8 inch (3.5 mm) stereo jack. This jack is used to bring out
line level audio signals from the board.

J3 is a female 9 pin D-Sub connector. It is used to communicate with a
host computer using RS-232 signal levels and asynchronous serial
protocols.

J4 is a jack for a 5.5 mm cylindrical plug. It is used to supply power to
the board. The center pin of the jack is 2 mm diameter and should
connect to the negative side of the power source. The outer sleeve of
the mating plug must be positive.

JP1 is a site for an eight pin header. It can be used to configure the
board for EPROM sizes other than the 1 Mbit (128K byte) EPROM
(27C010) shipped with the board. Most users will not need this feature.

88888 EZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite Hardware
DescriptionDescriptionDescriptionDescriptionDescription

8 – 48 – 48 – 48 – 48 – 4

JP2 is a six pin header. It is used to configure input jack J1 for either
line level or microphone input. The center pin in each group of three is
connected to one of the AD1847 codecs Line 1 Input pins. Jumpers
(also known as shunts or shorting links) can be used to connect these
pins to either the output of the microphone amplifier or to the output
of the line level input filter.

P1 is a 14 pin header connector used to connect to an ADSP-2181
EZ-ICE® in-circuit emulator. Pin 7 should be removed for keying
purposes.

P2 and P3 are sites for 50 pin header connectors. These connectors can
be used to access the ADSP-2181 signals for expansion or test
purposes.

U2 is a socket for an EPROM in a DIP package. As built the board will
accept a 27C512 (64K byte) or 27C010 (128K byte) EPROM. Changing
connections at JP1 allows the board to accept a 27C256 (32K byte),
27C020 (256K byte), 27C040 (512K byte), or 27C080 (1M byte) EPROM.
This socket is connected to the ADSP-2181’s byte-wide memory
interface.

R28 is a site for a zero ohm resistor. If this resistor is installed the
ADSP-2181 processor can reset the board under software control. The
software would assert reset by configuring PF0 as an output and then
setting it low.

R29 is another site for a zero ohm resistor. If this resistor is installed
and X3 and C37 are removed the codec can operate off of the ADSP-
2181’s CLKOUT signal instead of its own 24.576 MHz clock. It will also
be necessary to change X1 to a lower frequency value to stay within
the codecs ratings.

SWITCHESSWITCHESSWITCHESSWITCHESSWITCHES
S1 is the reset push button switch. Pushing this button causes the
ADSP-2181 processor and the AD1847 codec to go into the hardware
reset state and remain there until it is released. The switches output is
de-bounced electronically to prevent multiple transitions due to
mechanical contact bounce.

88888EZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite Hardware
DescriptionDescriptionDescriptionDescriptionDescription

8 – 58 – 58 – 58 – 58 – 5

S2 is the interrupt push button switch. Pushing this button causes the
ADSP-2181 processor to receive an IRQE interrupt input. This may
cause the processor to execute the current IRQE interrupt handler
software if the interrupt is enabled and the IRQE interrupt vector is in
place. The switches output is de-bounced electronically to prevent
multiple interrupts due to mechanical contact bounce.

INDICATORSINDICATORSINDICATORSINDICATORSINDICATORS
D1 is a red light emitting diode which is controlled by the FL1 output
of the ADSP-2181 processor. Software can control the state of this
indicator by writing to an internal register. See the ADSP-2181
documentation for more details.

D2 is a green light emitting diode which is on whenever the board has
power.

HARDWARE OPERATIONHARDWARE OPERATIONHARDWARE OPERATIONHARDWARE OPERATIONHARDWARE OPERATION
When power is applied to the board a reset circuit holds the processor
in reset for approximately 30 ms. Reset is then deasserted and the
processor begins the boot process. The BMODE and MMAP pins on
the ADSP-2181 are grounded so the processor boots from the byte-
wide memory interface which is connected to the EPROM socket. If the
EPROM supplied with the board is installed in the socket the operation
of the board will proceed as documented in the software section of this
manual.

HARDWARE EXPANSIONHARDWARE EXPANSIONHARDWARE EXPANSIONHARDWARE EXPANSIONHARDWARE EXPANSION
CONFIGURING THE BOARD FOR DIFFERENT EPROMSCONFIGURING THE BOARD FOR DIFFERENT EPROMSCONFIGURING THE BOARD FOR DIFFERENT EPROMSCONFIGURING THE BOARD FOR DIFFERENT EPROMSCONFIGURING THE BOARD FOR DIFFERENT EPROMS
JP1 allows the ADSP-2181 EZ-KIT Lite board to be configured for any
one of six different EPROM sizes. As the board is shipped it can
accommodate either a 27C512 or 27C010. If some other size EPROM is
installed in the socket at U2 it will be necessary to change the
connections at JP1. JP1 looks like this.

4 23 1
JP1

88888 EZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite Hardware
DescriptionDescriptionDescriptionDescriptionDescription

8 – 68 – 68 – 68 – 68 – 6

Connections are made vertically between pads. The pair of pads below
each number constitutes the jumper position associated with that
number. Connections can be made in several ways. If an eight pin
header is installed and the etch connections on the back are cut then
EPROM size changes can be accommodated easily by installing and
removing shunts. If frequent size changes are not contemplated it may
be sufficient to solder wires between the pads and so make the
connections permanent.

For a 27C256 EPROM the connections should be as follows.

4 23 1
JP1

Note that this involves cutting the etch on the back of the board at
jumper position 2 and adding a connection at jumper position 1.

For a 27C512 or 27C010 EPROM the connections should be as follows.

4 23 1
JP1

Note that this is how the connections are arranged when the board is
manufactured.

For a 27C020, 27C040 or 27C080 EPROM the connections should be as
follows.

4 23 1
JP1

Note that this involves cutting the etch on the back of the board at
jumper position 3 and adding a connection at jumper position 4.

88888EZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite Hardware
DescriptionDescriptionDescriptionDescriptionDescription

8 – 78 – 78 – 78 – 78 – 7

EXPANSION CONNECTORSEXPANSION CONNECTORSEXPANSION CONNECTORSEXPANSION CONNECTORSEXPANSION CONNECTORS
P2 and P3 are sites for 50 pin header connectors which provide access
to the ADSP-2181 signals for expansion or test purposes. The pin
numbers on these connectors are arranged as follows.

The signals available on these pins are the following.

 P2
Pin Number Signal Name

1 A0
3 A2
5 A4
7 A6
9 A8
11 A10
13 A12
15 D0
17 D2
19 D4
21 D6
23 D8
25 D10
27 D12
29 D14
31 D16
33 D18
35 D20
37 D22
39 WR
41 IOMS
43 DMS
45 PMS
47 BGH
49 VCC

2 A1
4 A3
6 A5
8 A7
10 A9
12 A11
14 A13
16 D1
18 D3
20 D5
22 D7
24 D9
26 D11
28 D13
30 D15
32 D17
34 D19
36 D21
38 D23
40 RD
42 BMS
44 CMS
46 BR
48 BG
50 GND

 P2
Pin Number Signal Name

502

491

88888 EZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite Hardware
DescriptionDescriptionDescriptionDescriptionDescription

8 – 88 – 88 – 88 – 88 – 8

 P3
Pin Number Signal Name

1 GND
3 IAD1
5 IAD3
7 IAD5
9 IAD7
11 IAD9
13 IAD11
15 IAD13
17 IAD15
19 IACK
21 IS
23 IRD
25 PF0
27 PF2
29 PF4
31 PF6
33 FL0
35 FL2
37 RESET
39 IRQL1
41 PWD
43 CODECDIS
45 TFS0
47 RXD0
49 VCC

 P3
Pin Number Signal Name

2 IAD0
4 IAD2
6 IAD4
8 IAD6
10 IAD8
12 IAD10
14 IAD12
16 IAD14
18 GND
20 IAL
22 IWR
24 GND
26 PF1
28 PF3
30 PF5
32 PF7
34 FL1
36 CLKOUT
38 IRQL0
40 IRQ2
42 PWDACK
44 TXD0
46 RFS0
48 SCK0
50 GND

The functions of these signals are listed in the ADSP-2181
documentation with the exception of the signal CODECDIS. This pin
may be grounded to disable the on-board AD1847 codec so the serial
port can be used for some other purpose.

88888EZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite HardwareEZ-KIT Lite Hardware
DescriptionDescriptionDescriptionDescriptionDescription

8 – 98 – 98 – 98 – 98 – 9

HARDWARE DEBUGGINGHARDWARE DEBUGGINGHARDWARE DEBUGGINGHARDWARE DEBUGGINGHARDWARE DEBUGGING
If the green LED fails to light, check your power connections. Verify
that your power supply has the proper size connector and that the
polarity is correct. The power supply voltage measured at the
connector to the board should be in the range of 8 to 10 volts DC. Also,
make sure that there are no objects beneath or on top of the board that
may be causing a short circuit.

If the power connection is good and the green LED is lit yet the red
LED does not flash and no audio signal was produced, make sure that
the EPROM is properly seated in the socket.

Hit the reset button if the board appears to be operating improperly.

a

ADSP-2181
EZ-KIT Lite

Programmer’s
Quick Reference

1

Development Software Invocation Commands

Assembler asm21 sourcefile [–switch ...] –2181

Switches
–c Case-sensitivity for program symbols
–l .LST list file generated
–m [depth] Macros expanded in .LST file
–i [depth] Show contents of INCLUDE files in .LST file
–o filename Rename output files (default: SOURCEFILE.OBJ)
–dident [= literal] Define identifier for assembler’s C preprocessor
–s No semantics checking on multifunction instructions
–2181 Use ADSP-2181 specific instructions

Linker ld21 file1 [file2 ...] [–switch ...]
or ld21 -i file_all [–switch ...]

Switches
–a archfile . ACH architecture file read by linker (must specify ADSP2181.ACH)
–i file_all Files listed in indirect file file_all are linked
–e executable Output files given filename EXECUTABLE.EXE (default: 210x.EXE)
–dryrun Quick run to test for link errors (no .EXE file generated)
–g .SYM symbol table file generated
–x .MAP memory map file generated
–user fastlibr Search library file generated by librarian
–dir directory ; Specify directories to search for library routines
–p Assign library routines to boot pages where called

Simulators sim2181 [–switch ...]
Switches
–a archfile .ACH architecture file read by simulator (must specify ADSP2181.ACH)
–e exe_file .EXE program file loaded by simulator
–c Case-sensitivity for program symbols
–k keyfile Load and execute keystroke file
–o msgfile Generate file containing error messages and Command Output Window messages
–w winfile Simulator starts up with previously saved windows display file (.WIN)

PROM Splitter spl21 exe_file promfile -pm [–switch ...]
or spl21 exe_file promfile -dm [–switch ...]
or spl21 exe_file promfile -loader -2181 [–s] [–i]

Switches
–pm Extract program memory ROM information
–dm Extract data memory ROM information
–s PROM file format: Motorola S record (default)
–i PROM file format: Intel Hex record
–us PROM file format: Motorola S record byte stream
–us2 PROM file format: Motorola S2 record byte stream
–ui PROM file format: Intel Hex record byte stream
–loader -2181 Generate BDMA bootstrap loader in PROM file

2

Assembler Directives
.MODULE/qualifier / qualifier / ... module_name ;
.PAGE;
.CONST constant_name=expression ;
.VAR/ qualifier / qualifier / ... buffer_name[length], ... ;
.INIT buffer_name : init_values ;
.GLOBAL buffer_name , ... ;
.ENTRY program_label , ... ;
.EXTERNAL external_symbol , ... ;
.PORT port_name ;
.INCLUDE < filename >;
.DMSEG dmseg_name;
.MACRO macro_name(param1 , param2 , ...) ;
.ENDMACRO;
.LOCAL macro_label , ... ;
.NEWPAGE; Insert pagebreak in .LST file
.PAGELENGTH #lines ; Insert pagebreaks every #lines in .LST file
.LEFTMARGIN #columns ; Set left margin in .LST file
.INDENT #columns ; Indent code #columns in .LST file
.PAGEWIDTH #columns ; Set right margin in .LST file
.ENDMOD;

Assembler C Preprocessor Directives
#define macro_name(param1 , ...) expression Define a macro
#undef macro_name Undefine a macro
#include “ filename ” Include text from another source file

#if expression Conditionally include and assemble, depending on the value of
 an expression that evaluates to a constant

#else Include and assemble if the previous #if test failed
#endif

#ifdef macro_name Conditionally include and assemble, if macro_name is defined (with #define or –d switch)
#ifndef macro_name Conditionally include and assemble, if macro_name is not defined
#else Include and assemble if the previous #ifdef or #ifndef test failed
#endif

.INIT init_values: constant, constant, ...
<filename>
^other_buffer
%other_buffer

.MODULE qualifiers: RAM, ROM
ABS=address (do not use with STATIC)
SEG=seg_name
STATIC

.VAR qualifiers: PM, DM,
RAM, ROM
ABS=address (do not use with STATIC)
SEG=seg_name
CIRC
STATIC

3

Invoking The SimulatorInvoking The SimulatorInvoking The SimulatorInvoking The SimulatorInvoking The Simulator
> SIM2181 [-a filename] [-c] [-e filename] [-k filename]

 [-w filename] [-o filename] [-help]

-a filename Specify .ACH architecture file
-c Make simulator case-sensitive for assembly code symbols
-e filename Load program (.EXE file)
-k filename Load and run keystroke file
-w filename Start simulator with .WIN windows configuration file
-o filename Open ASCII output file to capture simulator error

messages and command output window messages
-help Display invocation syntax and command line switches;

simulator is not invoked

example:
> sim2181 -a c:\ADI_DSP\21xx\LIB\ADSP2181

General-Purpose Program Control
Registers Registers
HOLDER1 PC
HOLDER2 CNTR
HOLDER3 CYCLE
HOLDER4 PM_ADDR

DM_ADDR

Simulator-Maintained Software RegistersSimulator-Maintained Software RegistersSimulator-Maintained Software RegistersSimulator-Maintained Software RegistersSimulator-Maintained Software Registers

4

Command Definition
alias ’ newname’ ’ cmd’ Create command alias
alias >’ filename ’ Save aliases to file
alias List aliases in command output window
addsymbol+ ’ symbol ’ addr Add program symbol at address
{asym+}
assemble addr instr Assemble instruction at address
{a}
break addr Set breakpoint
break addr, n Set multi-breakpoint
break List all breaks in command output window
{b}
breakchange expr Set break change expression
{bc}
breakdelete break# Delete break
{bd}
breakdelete ALL Delete all breaks
{bd}
breakexpression expr Set break expression
{be}
breakrange range Set break address range
{br}
chipreset Chip reset (with program boot)
{cr}
connect rfs# tfs# Connect RFS of SPORTx (rfs#) toTFS of SPORTy

(tfs#)
connect rfs# tfs# OPEN Disconnect RFS-to-TFS connection
connect ALL OPEN Disconnect all RFS-to-TFS connections
connect List current RFS-to-TFS connections
delete ’ newname’ Delete alias
dump range >’ filename ’ Dump memory to file
{d}
execute instr Execute instruction
{exe}
find addr , addr expr Find numeric value (expr) in memory range
{f}
fill addr expr Set memory location to value (expr)
fill range expr Fill memory range with value (expr)
fill startaddr <’ filename ’ Fill memory range from file
go Start program execution
go addr Start program execution, stop at addr

5

{g}
Command Definition

interrupt irq# min [max][OFFSET #cycles] Generate periodic interrupt signal
interrupt sig min [max][OFFSET #cycles] Generate periodic serial port signal
interrupt FI period [ONCE|RESET] Generate periodic Flag In signal
interrupt ALL List settings for all signals
interrupt ACTIVE List settings for all active signals
{i}
keyon ’ keyfile ’ Start recording keystroke file
{ko}
keyoff Stop recording keystrokes, close file
{kf}
 <’ keyfile ’ Playback keystroke file
load ’ filename ’ Load program (.EXE file) into memory
{l}
loadrom ’ filename ’ Load ROM file (.BNM file) into boot
{lr} memory
loadsymbols ’ filename ’ Read new symbol table (.SYM file) into
{ls} simulator
loopback sport# Connect TFS to RFS and DT to DR
{lb} of serial port
loopback sport# OPEN Disconnect loopback connection
loopback ALL OPEN Disconnect all loopback connections
loopback List current loopback connections
{lb}
openport addr [<’ infile ’][>’ outfile ’] Open memory-mapped I/O port
{op} and assign data files
openport addr <’ infile ’ CIRC Open memory-mapped I/O port
{op} with circular input data file

openport addr Close memory-mapped I/O port
{op}
opensport sport# [<’ infile ’][>’ outfile ’] Open SPORT and assign data files
opensport sport# <’ infile ’ CIRC Open SPORT with circular input data

file

6

opensport sport# Close SPORT
{os}
Command Definition
plot range decimation Plot memory data
{pl}
profileadd range# addr , addr Define (or redefine) profile address range
{pa}
profileclear Clear all profile data, delete all address ranges
{pc}
profiledelete range# Delete profile address range
{pd}
profilereset Clear all profile data, retain address ranges
{pr}
resetnoboot Reset chip, without program boot
{re}
shell Temporarily exit to operating system
{sh} (type “exit” to return to simulator)
state >’ file ’ Save simulator state
state <’ file ’ Restore simulator state
step Single step
step n Multi-step n instructions
{s}
undefine reg Undefine contents of register
undefine addr Undefine contents of memory location
undefine range Undefine contents of memory range
{u}
watchdelete watch# Delete watch#
{wd}
watchexpression expr Set watch expression
{we}
watchpoint addr Set watchpoint on data variable or buffer
watchpoint range Set watch address range
watchpoint List all watches in command output window
{w}
win >’ file ’ Save windows configuration (.WIN file)
win <’ file ’ Restore windows configuration (.WIN file)
? expr Evaluate general expression
? reg Evaluate contents of register
? addr Evaluate contents of memory location
? symbol Locate program symbol
?+ expr Add expression to expressions window
?- expr# Delete expr# from expressions window
reg = expr Set register equal to value of expression

7

(ex. AX0=0xFF)

Short form of command: command chipreset
{ cmd} {cr}

To define an address range: range = startaddr , endaddr
range = startaddr / #locations

Command Window CommandsCommand Window CommandsCommand Window CommandsCommand Window CommandsCommand Window Commands

Ctrl-D Dump memory to file (in any memory window)
Ctrl-F Fill memory (in any memory window)
Ctrl-G Go to address (in any memory window)
Ctrl-L List open windows and choose one to bring to front
Ctrl-M Load memory (in any memory window)
Ctrl-R Resize trace length (in Trace Window)
Ctrl-T Toggle numeric format in window (decimal ↔ hexadecimal)
Ctrl-O Toggle tracking of data memory and program memory window

Control Key SequencesControl Key SequencesControl Key SequencesControl Key SequencesControl Key Sequences

Control Key ^D ^F ^G ^M ^R ^T ^O
Window
Boot Memory ✔ ✔ ✔ ✔ ✔

Data Memory ✔ ✔ ✔ ✔ ✔ ✔

Program Memory ✔ ✔ ✔ ✔ ✔ ✔

Computational Registers ✔

Control Registers ✔

DAG Registers ✔

Program Control Registers ✔

SPORT Registers ✔

Command Window ✔

Expressions ✔

Profile ✔

Trace ✔ ✔

8

Window-to-Control Key Cross ReferenceWindow-to-Control Key Cross ReferenceWindow-to-Control Key Cross ReferenceWindow-to-Control Key Cross ReferenceWindow-to-Control Key Cross Reference

Function
Key Function
F1 Help
F2 Goto Next Window
F3 Goto Menu Bar
F4 Run (Go)
F5 Move Window Up ↑
F6 Move Window Down ↓
F7 Move Window Left ←
F8 Move Window Right →
F9 Set/Clear Breakpoint
F10 Single Step

Shift-F5 Enlarge Window Vertically ◊
Shift-F6 Reduce Window Vertically
Shift-F7 Enlarge Window Horizontally ←→
Shift-F8 Reduce Window Horizontally → ←
Shift-F9 Set/Clear Multi-Breakpoint
Shift-F10 Multi-Step

Escape Close window

Keyboard Function Keys (PC only)Keyboard Function Keys (PC only)Keyboard Function Keys (PC only)Keyboard Function Keys (PC only)Keyboard Function Keys (PC only)

9

Circular Buffer Addressing

Next Address = (I + M – B) modulo(L) + B

I=current address M=modify value (signed) M≤L
B=base address L=buffer length

(Set L=0 for standard, non-circular indirect addressing: I+M=modified address)

Buffer Length & Base Address Operators

^ buffer_name Base address of buffer_name
% buffer_name Length (number of locations) of buffer_name

Example: Setting Up DAG Registers for Circular Buffer & DO UNTIL Loop

.VAR/DM/RAM/CIRC real_data[n]; {n=number of input samples}
 I5=^real_data; {buffer base address}
 L5=%real_data; {buffer length}
 M5=1; {post-modify I5 by 1}
 CNTR=%real_data; {loop counter = buffer length}
 DO loop UNTIL CE;

AX0=DM(I5,M5); {get next sample}
...
{now process sample stored in AX0}

loop: ...

Allowed Registers for Data Move
& Multifunction Instructions

dreg
(data registers)

AX0, AX1
AY0, AY1
AR
MX0, MX1
MY0, MY1
MR0, MR1, MR2
SI, SE, SR0, SR1

I0, I1, I2, I3, I4, I5, I6, I7
M0, M1, M2, M3, M4, M5, M6, M7
L0, L1, L2, L3, L4, L5, L6, L7
TX0, TX1, RX0, RX1
SB, PX
ASTAT, MSTAT
SSTAT (read-only)
IMASK, ICNTL
IFC (write-only)
CNTR
OWRCNTR (write-only)

reg

10

Instruction Set Summary

Notation Conventions
UPPERCASE Explicit syntax—must be entered exactly as shown (either lowercase or uppercase may be used, however)
I0–I7 Index registers for indirect addressing
M0–M7 Modify registers for indirect addressing
L0–L7 Length registers for circular buffers (set to 0 for non-circular indirect addressing)
<data> Immediate data value
<addr> Immediate address value (absolute address or program label)
<exp> Exponent (shift value) in shift immediate instructions (8-bit signed number)
cond Condition code for conditional instruction
term Termination code for DO UNTIL loop
dreg Data register (of ALU, MAC, or Shifter)
reg Any register (including dregs)
; A semicolon terminates the instruction
, Commas separate multiple operations of a single instruction
[] Brackets enclose optional parts of instruction
[, ...] Indicates multiple operations of an instruction that may be combined in any order, separated by commas.

 option1
 option2 List of options; choose one.
 option3

[IF cond] AR = xop + yop ; Add/Add with Carry
AF C

yop + C
constant

= xop – yop ; Subtract X–Y/Subtract X–Y with Borrow
yop + C – 1
constant

= yop – xop ; Subtract Y–X/Subtract Y–X with Borrow
xop + C – 1
constant

ALU Instructions

Permissible xops
AX0, AX1, AR, MR0, MR1, MR2, SR0, SR1

Permissible yops (base instruction set)
AY0, AY1, AF

Permissible yops and constants (extended instruction set)
AY0, AY1, AF, 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384,
32767, -2, -3, -5, -9, -17, -33, -65, -129, -257, -513, -1025, -2049, -4097, -8193, -16385, -32768

[IF cond] AR = xop AND yop ; AND, OR, XOR
AF OR

XOR

11

[IF cond] AR = PASS xop ; Pass, Clear
AF yop

 constant

Permissible yops (base instruction set)
AY0, AY1, AF

Permissible yops and constants (extended instruction set)
AY0, AY1, AF, 0, 1, 2, 3, 4, 5, 7, 8, 9, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127, 128, 129, 255, 256, 257, 511, 512,
513, 1023, 1024, 1025, 2047, 2048, 2049, 4095, 4096, 4097, 8191, 8192, 8193, 16383, 16384, 16385, 32766,
32767, -1, -2, -3, -4, -5, -6, -8, -9, -10, -16, -17, -18, -32, -33, -34, -64, -65, -66, -128, -129, -130, -256, -257, -258,
-512, -513, -514, -1024, -1025, -1026, -2048, -2049, -2050, -4096, -4097, -4098, -8192, -8193, -8194, -16384,
-16385, -16386, -32767, -32768

[IF cond] AR = – xop ; Negate
AF yop

= NOT xop ; NOT
yop
0

= ABS xop ; Absolute Value

= yop + 1 ; Increment

= yop – 1 ; Decrement

= DIVS yop, xop ; Divide
= DIVQ xop ;

= TSTBIT n of xop ; Bit Operations
 SETBIT n of xop
 CLBIT n of xop
 TGBIT n of xop

Permissible xops
AX0, AX1, AR, MR0, MR1, MR2, SR0, SR1

Permissible n Values (0 = LSB)
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

Definitions of Operations
TSTBIT is an AND operation with a 1 in the selected bit
SETBIT is an OR operation with a 1 in the selected bit
CLBIT is an AND operation with a 0 in the selected bit
TGBIT is an XOR operation with a 1 in the selected bit

12

NONE = <ALU>; Result Free

where <ALU> is any unconditional ALU operation of the 21xx base instruction set (except DIVS or
DIVQ). (Note that the additional constant ALU operations of the ADSP-2171/2181 extended instruction
set are not allowed.)

Description: Perform the designated ALU operation, set the condition flags, then discard the result
value. This allows the testing of register values without disturbing the AR or AF register values.

13

X Y

ALU

R

AZ
AN
AC
AV
AS
AQ

CI

MUXMUX

AR
REGISTER

MUX

MUX

16

AF
REGISTER

AX
REGISTERS

2 x 16

AY
REGISTERS

2 x 16

16 16

16

16

24

16

PMD BUS

DMD BUS
16 (UPPER)

R - BUS

ALU Block Diagram

IF Condition Codes
Cond
EQ Equal zero
NE Not equal zero
LT Less than zero
GE Greater than or equal zero
LE Less than or equal zero
GT Greater than zero
AC ALU carry
NOT AC Not ALU carry
AV ALU overflow
NOT AV Not ALU overflow
MV MAC overflow
NOT MV Not MAC overflow
NEG Xop input sign negative
POS Xop input sign positive
NOT CE Not counter expired
FLAG_IN * FI pin=1
NOT FLAG_IN * FI pin=0

* Only for JUMP, CALL

xop AX0, AX1
AR
MR0, MR1, MR2
SR0, SR1

yop AY0*, AY1
AF

* DIVS instruction may not use AY0 as YOP operand.

Allowed XOP, YOP Registers
for ALU Instructions

14

[IF cond] MR = xop * yop (SS) ; Multiply
MF xop (SU)

(US)
(UU)
(RND)

= MR + xop * yop (SS) ; Multiply/Accumulate
 xop (SU)

(US)
(UU)
(RND)

= MR – xop * yop (SS) ; Multiply/Subtract
 xop (SU)

(US)
(UU)
(RND)

= MR [(RND)] ; Transfer MR

= 0 ; Clear

IF MV SAT MR ; Conditional MR Saturation

(S) Signed input (xop, yop)
(U) Unsigned input (xop, yop)
(RND) Rounded output

MAC Instructions

Instruction Set Summary

IF Condition Codes
Cond
EQ Equal zero
NE Not equal zero
LT Less than zero
GE Greater than or equal zero
LE Less than or equal zero
GT Greater than zero
AC ALU carry
NOT AC Not ALU carry
AV ALU overflow
NOT AV Not ALU overflow
MV MAC overflow
NOT MV Not MAC overflow
NEG Xop input sign negative
POS Xop input sign positive
NOT CE Not counter expired
FLAG_IN * FI pin=1
NOT FLAG_IN * FI pin=0

* Only for JUMP, CALL

Allowed XOP, YOP Registers
for MAC Instructions

xop MX0, MX1
MR0, MR1, MR2
AR
SR0, SR1

yop MY0, MY1
MF

15

MAC Block Diagram

MUX

MUX

MF
REGISTER

MY
REGISTERS

2 x 16

24

16

16

X Y
MULTIPLIER

P

MUX

MX
REGISTERS

2 x 16

16 16

32

16

MR1
REGISTER

MR2
REGISTER

MR0
REGISTER

168

M
U
X

R0R1R2

MUXMUXMUX

40

MV

16

PMD BUS

DMD BUS
16 (UPPER)

R - BUS

ADD / SUBTRACT

MR Registers
0153140

Overflow Least Significant 16 Bits

MR2 MR1 MR0

Most Significant 16 Bits

1632

16

Shifter Instructions

[IF cond] SR = [SR OR] ASHIFT xop (HI) ; Arithmetic Shift
(LO)

[IF cond] SR = [SR OR] LSHIFT xop (HI) ; Logical Shift
(LO)

[IF cond] SR = [SR OR] NORM xop (HI) ; Normalize
(LO)

[IF cond] SE = EXP xop (HI) ; Derive Exponent
(LO)
(HIX)

[IF cond] SB = EXPADJ xop ; Block Exponent Adjust

SR = [SR OR] ASHIFT xop BY <exp> (HI) ; Arithmetic Shift Immediate
(LO)

SR = [SR OR] LSHIFT xop BY <exp> (HI) ; Logical Shift Immediate
(LO)

(HI) Shift is referenced to SR1 (most significant 16 bits)
(LO) Shift is referenced to SR0 (least significant 16 bits)
(HIX) HI extend (AV overflow bit read by exponent detector)

Instruction Set Summary

IF Condition Codes
Cond
EQ Equal zero
NE Not equal zero
LT Less than zero
GE Greater than or equal zero
LE Less than or equal zero
GT Greater than zero
AC ALU carry
NOT AC Not ALU carry
AV ALU overflow
NOT AV Not ALU overflow
MV MAC overflow
NOT MV Not MAC overflow
NEG Xop input sign negative
POS Xop input sign positive
NOT CE Not counter expired
FLAG_IN * FI pin=1
NOT FLAG_IN * FI pin=0

* Only for JUMP, CALL

Allowed XOP Registers
for Shifter Instructions

xop SI, SR0, SR1
AR
MR0, MR1, MR2

17

Shifter Block Diagram

MUX

16

32

SR1
REGISTER

SR0
REGISTER

16

SI
REGISTER

SB
REGISTER

MUX

MUX

SE
REGISTER

NEGATE

MUX

COMPARE
EXPONENT
DETECTOR

HI / LO

I X

R

C

X

O

OR / PASS

MUXMUX

8

32

16

1616

From
INSTRUCTION

16

8

MUX

SS

DMD BUS

R - BUS

18

Data Move Instructions

reg = reg ; Register-to-Register Move

reg = <data> ; Load Register Immediate
dreg = <data> ;

dreg = DMOVLAY Read Overlay Register

DMOVLAY = dreg ; Write Overlay Register

reg = DM (<addr>) ; Data Memory Read (Direct Address)

dreg = IO (<addr>); (See Note 1) I/O Read (Direct Address)

dreg = DM (I0 , M0) ; Data Memory Read (Indirect Address)
I1 M1
I2 M2
I3 M3

I4 M4
I5 M5
I6 M6
I7 M7

dreg = PM (I4 , M4) ; Program Memory Read (Indirect Address)
I5 M5
I6 M6
I7 M7

DM (<addr>) = reg ; Data Memory Write (Direct Address)

DM (<addr>) = DMOVLAY ; Writes Contents of Overlay Registers to Data Memory

IO (<addr>) = dreg ; (See Note 1) I/O Write (Direct Address)

DM (I0 , M0) = dreg ; Data Memory Write (Indirect Address)
I1 M1
I2 M2
I3 M3

I4 M4
I5 M5
I6 M6
I7 M7

PM (I4 , M4) = dreg ; Program Memory Write (Indirect Address)
I5 M5
I6 M6
I7 M7

Note 1: <addr> is an address value between 0 and 2048.

Instruction Set Summary

19

Multifunction Instructions

<ALU> , dreg = dreg ; Computation with Register-to-Register Move
<MAC>
<SHIFT>

<ALU> , dreg = DM (I0 , M0) ; Computation with Memory Read
<MAC> I1 M1
<SHIFT> I2 M2

I3 M3

I4 M4
I5 M5
I6 M6
I7 M7

PM (I4 , M4) ;
I5 M5
I6 M6
I7 M7

DM (I0 , M0) = dreg , <ALU> ; Computation with Memory Write
I1 M1 <MAC>
I2 M2 <SHIFT>
I3 M3

I4 M4
I5 M5
I6 M6
I7 M7

PM (I4 , M4)
I5 M5
I6 M6
I7 M7

AX0 = DM (I0 , M0) , AY0 = PM (I4 , M4) ; Data & Program Memory Read
AX1 I1 M1 AY1 I5 M5
MX0 I2 M2 MY0 I6 M6
MX1 I3 M3 MY1 I7 M7

<ALU> , AX0 = DM (I0 , M0) , AY0 = PM (I4 , M4) ; ALU/MAC with Data & Program
<MAC> AX1 I1 M1 AY1 I5 M5 Memory Read

MX0 I2 M2 MY0 I6 M6
MX1 I3 M3 MY1 I7 M7

<ALU>*† Any ALU instruction (except DIVS, DIVQ)
<MAC>*† Any multiply/accumulate instruction
<SHIFT>* Any shifter instruction (except Shift Immediate)

 * May not be conditional instructions
 † AR, MR result registers must be used—not AF, MF feedback registers

20

DO <addr> [UNTIL term] ; Do Until

[IF cond] JUMP (I4) ; Jump
(I5)
(I6)
(I7)

<addr>

[IF cond] CALL (I4) ; Call Subroutine
(I5)
(I6)
(I7)

<addr>

IF FLAG_IN JUMP <addr> ; Jump/Call on Flag In Pin
NOT FLAG_IN CALL

[IF cond] SET FLAG_OUT [, ...] ; Modify Flag Out Pin
RESET FL0
TOGGLE FL1

FL2

[IF cond] RTS ; Return from Subroutine

[IF cond] RTI ; Return from Interrupt Service Routine

IDLE [(n)] ; Idle

 n=16, 32, 64, or 128

Program Flow Instructions

Instruction Set Summary

DO UNTIL Termination Codes
Term
CE Counter expired
EQ Equal zero
NE Not equal zero
LT Less than zero
GE Greater than or equal zero
LE Less than or equal zero
GT Greater than zero
AC ALU carry
NOT AC Not ALU carry
AV ALU overflow
NOT AV Not ALU overflow
MV MAC overflow
NOT MV Not MAC overflow
NEG Xop input sign negative
POS Xop input sign positive
FOREVER Always

IF Condition Codes
Cond
EQ Equal zero
NE Not equal zero
LT Less than zero
GE Greater than or equal zero
LE Less than or equal zero
GT Greater than zero
AC ALU carry
NOT AC Not ALU carry
AV ALU overflow
NOT AV Not ALU overflow
MV MAC overflow
NOT MV Not MAC overflow
NEG Xop input sign negative
POS Xop input sign positive
NOT CE Not counter expired
FLAG_IN * FI pin=1
NOT FLAG_IN * FI pin=0

* Only for JUMP, CALL

21

Miscellaneous Instructions

NOP ; NOP

MODIFY (I0 , M0) ; Modify Address Register
I1 M1
I2 M2
I3 M3

I4 M4
I5 M5
I6 M6
I7 M7

 [PUSH STS] [, POP CNTR] [, POP PC] [, POP LOOP] ; Stack Control
POP

 ENA SEC_REG [, ...] ; Mode Control
 DIS BIT_REV

AV_LATCH
AR_SAT
M_MODE
TIMER
G_MODE
INTS

IDLE ; Put Processor In Idle State

IDLE (n) ; Put Processor In Idle State
And Slow Clock By a Factor
Of n

Permissible Values for n: 16, 32, 64, 128

Modes
SEC_REG Secondary register set
BIT_REV Bit-reverse addressing in DAG1
AV_LATCH ALU overflow (AV) status latch
AR_SAT AR register saturation
M_MODE MAC result placement mode
TIMER Timer enable
G_MODE Go mode enable
INTS Interrupt enable

22

Control/Status Registers

Control register default bit values at reset are as shown; if no value is
shown, the bit is undefined after reset. Reserved bits are shown on a gray
field—these bits should always be written with zeros.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PWAIT
Program Memory
Wait States

0100

SPORT0 Enable
1 = enabled, 0 = disabled

SPORT1 Enable
1 = enabled, 0 = disabled

SPORT1 Configure
1 = serial port
0 = FI, FO, IRQ0, IRQ1, SCLK

000 11 10 00000 DM(0x3FFF)

System Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IOWAIT0IOWAIT1IOWAIT2IOWAIT3DWAIT

0 11 111 111 111 111 1 DM(0x3FFE)

Data Memory Waitstate Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TPERIOD Period Register

TCOUNT Counter Register

TSCALE Scaling Register00000000

DM(0x3FFD)

DM(0x3FFC)

DM(0x3FFB)

Timer Registers

SPORT0 Autobuffer Control
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TBUF Transmit Autobuffering Enable

0 0 0 0

RBUF Receive Autobuffering Enable

TIREG TMREG RIREG RMREG

00

BIASRND MAC Biased Rounding Control Bit

CLKODIS CLKOUT Disable Control Bit

DM(0x3FF3)

23

SPORT0 Control Register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Multichannel Enable MCE

Internal Serial Clock Generation ISCLK

Receive Frame Sync Required RFSR

Transmit Frame Sync Required TFSR

Transmit Frame Sync Width TFSW

Receive Frame Sync Width RFSW

Multichannel Frame Delay MFD

IRFS Internal Receive Frame Sync Enable

INVTFS Invert Transmit Frame Sync
(or INVTDV Invert Transmit Data Valid)

INVRFS Invert Receive Frame Sync

SLEN (Serial Word Length – 1)

DTYPE Data Format
00=right justify, zero-fill unused MSBs
01=right justify, sign-extend into unused MSBs
10=compand using µ-law
11=compand using A-law

ITFS Internal Transmit Frame Sync Enable
(or MCL Multichannel Length: 1=32 words, 0=24 words)

Only If Multichannel Mode Enabled

Only If Multichannel Mode Enabled

Only If Multichannel Mode Enabled

0000000000000000 DM(0x3FF6)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DM(0x3FFA)

DM(0x3FF9)

DM(0x3FF8)

DM(0x3FF7)

Transmit
Word

Enables

Receive
Word

Enables

SPORT0 Multichannel Word Enables

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SPORT0 SCLKDIV

DM(0x3FF5)

1=Channel Enabled
0=Channel Ignored

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SPORT0 RFSDIV

DM(0x3FF4)

RFSDIV= – 1SCLK frequency
RFS frequency

SCLKDIV= – 1CLKOUT frequency
2 * (SCLK frequency)

24

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Flag Out (read-only)

Internal Serial Clock Generation (ISCLK)

Receive Frame Sync Required (RFSR)

Transmit Frame Sync Required (TFSR)

Transmit Frame Sync Width (TFSW)

Receive Frame Sync Width (RFSW)

(IRFS) Internal Receive Frame Sync Enable

(INVTFS) Invert Transmit Frame Sync

(INVRFS) Invert Receive Frame Sync

SLEN (Serial Word Length – 1)

(DTYPE) Data Format
00=right justify, zero-fill unused MSBs
01=right justify, sign extend into unused MSBs
10=compand using µ-law
11=compand using A-law

Internal Transmit Frame Sync Enable (ITFS)

000000000000000

SPORT1 Control Register

DM(0x3FF2)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TBUF
Transmit Autobuffer Enable

RBUF
Receive Autobuffer Enable

RMREG
Receive M register

RIREG
Receive I register

TMREG
Transmit M register

TIREG
Transmit I register

XTALDIS
XTAL Pin Disable During Powerdown

1=disabled, 0=enabled
(XTAL pin should be disabled when

no external crystal is connected)

XTALDELAY
Delay Startup From Powerdown 4096 Cycles

1=delay, 0=no delay
(use delay to allow internal phase locked

loop or external oscillator to stabilize)

PDFORCE
Powerdown Force

1=force processor to vector to
powerdown interrupt

PUCR
Powerup Context Reset

1=soft reset, 0=resume execution

SPORT1 Autobuffer Control

DM(0x3FEF)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SPORT1 SCLKDIV

DM(0x3FF1)

RFSDIV= – 1SCLK frequency
RFS frequency

SCLKDIV= – 1CLKOUT frequency
2 * (SCLK frequency)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SPORT1 RFSDIV

DM(0x3FF0)

Control/Status Registers

25

Programmable Flag & Composite Select Control

Programmable Flag Data

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PFDATA

DM(0x3FE5)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BWCOUNT

0 0 0 0 0 0 0 0 0 0 1 0 0 0 00

BDMA Word Count

DM(0x3FE4)

DM(0x3FE6)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BMWAIT

1011110

PFTYPE1
= Output0
= Input

1 0 00 0

CMSSEL1 =
Enable CMS0 =

Disable CMS

0 00 0
DMBMIOM PM

26

BDMA Control

Control/Status Registers

BDMA External Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0000000 00 00 00 00 0 DM(0x3FE2)

BEAD

DM(0x3FE2)

BDMA Internal Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0000000 00 00 00 00 0 DM(0x3FE1)

BIAD

DM(0x3FE1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BMPAGE

0000000 00 00 10 00 0 DM(0x3FE3)

BDIR
0 = load from BM
1 = store to BM

BCR
0 = run during BDMA
1 = halt during BDMA,
context reset when done

BTYPE (see table)

00

01

10

11

BTYPE

INTERNAL
MEMORY
SPACE

WORD
SIZE ALIGNMENT

PM

DM

DM

DM

24

16

8

8

full word

full word

msb

lsb

DM(0x3FE3)

27

Programmable Flag & Composite Select Control

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0000000 00 00 00 00 0 DM(0x3FE0)

IDMAA

IDMAD
Destination Memory type:
0= PM, 1=DM

DM(0x3FE0)

Status Registers
(Non-Memory-Mapped)

ALU Result Zero

ALU Result Negative

ALU Overflow

ALU Carry

ALU X Input Sign

ALU Quotient

MAC Overflow

Shifter Input Sign

01234567

00000000

SS MV AQ AS AC AV AN AZ

PC Stack Empty

PC Stack Overflow

Count Stack Empty

Count Stack Overflow

Status Stack Empty

Status Stack Overflow

Loop Stack Empty

Loop Stack Overflow

01234567

10101010

ASTAT SSTAT (read-only)

MSTAT

Register Bank Select
 0=primary, 1=secondary

Bit-Reverse Addressing Enable (DAG1)

ALU Overflow Latch Mode Enable

AR Saturation Mode Enable

MAC Result Placement
 0=fractional, 1=integer

Timer Enable

Go Mode Enable

0123456

0000000

Bit Mode Name
0 SEC_REG Secondary register set
1 BIT_REV Bit-reverse addressing in DAG1
2 AV_LATCH ALU overflow (AV) status latch
3 AR_SAT AR register saturation
4 M_MODE MAC result placement mode
5 TIMER Timer enable
6 G_MODE Go mode enable
7 INTS Interrupt enable

Mode Names for Mode Control Instruction
(see Miscellaneous Instructions on page 21)

28

Interrupt Registers
(Non-Memory-Mapped)

ICNTL
4 3 2 1 0

Interrupt Nesting

00000

1=edge
0=level

1=enable
0=disable

IRQ0 Sensitivity

IRQ1 Sensitivity

IRQ2 Sensitivity

IMASK

11 10 9 8 7 6 5 4 3 2 1 0

Timer

000000000000

15 14 13 12

0000

IRQL0

SPORT1 Receive or IRQ0

SPORT1 Transmit or IRQ1

IRQ2

BMDA Interrupt

IRQE

SERVICE ENABLE BITS

SPORT0 Receive

SPORT0 Transmit

IRQL1

29

Interrupt Registers
(Non-Memory-Mapped)

IFC

11 10 9 8 7 6 5 4 3 2 1 0

Timer

000000000000

IRQ2

15 14 13 12

0000

Timer

SPORT1 Transmit or IRQ1

SPORT1 Receive or IRQ0

BDMA

IRQE

SPORT1 Receive or IRQ0

SPORT1 Transmit or IRQ1

IRQ2

BMDA

IRQE

INTERRUPT FORCE BITS INTERRUPT CLEAR BITS

SPORT0 Receive

SPORT0 Transmit

SPORT0 Receive

SPORT0 Transmit

30

Memory Maps

Data Memory

Data Memory Address
32 Memory mapped

registers
0x3FFF
0x3FE0

Internal
8160 words

0x3FDF

0x2000

8K Internal
(DMOVLAY=0)

or
External 8K

(DMOVLAY=1,2)

0x1FFF

0x0000

Program Memory

Program Memory Address

8K Internal
(PMOVLAY = 0,

MMAP = 0)
or

External 8K
(PMOVLAY = 1 or 2,

MMAP = 0)

0x3FFF

0x2000

8K Internal

0x1FFF

0x0000

MMAP = 0

31

Interrupt Vector Tables

ADSP-2181
Interrupt Interrupt
Source Vector Address (Hex)
Reset (or Power up with PUCR=1) 0000 (highest priority)
Power Down (non-maskable) 002C
IRQ2 0004
IRQL1 0008
IRQL0 000C
SPORT0 Transmit 0010
SPORT0 Receive 0014
IRQE 0018
BDMA Interrupt 001C
SPORT1 Transmit or IRQ1 0020
SPORT1 Receive or IRQ0 0024
Timer 0028 (lowest priority)

Control/Status Registers
Symbolic names for the memory-mapped control and status registers are provided in four files included
with the development software. The symbols are defined as constants equal to the register addresses, and
can be used for direct addressing. To use these symbols, include the appropriate file in the your source
code files with the assembler’s .INCLUDE directive:

Filename Include Directive To Use:
DEF2181.H .INCLUDE <DEF2181.H>;

Data Memory Assembly
Control/Status Register Address Code Symbol
System Control Register 0x3FFF Sys_Ctrl_Reg
Data Memory Wait State Control Register 0x3FFE Dm_Wait_Reg
Timer Period 0x3FFD Tperiod_Reg
Timer Count 0x3FFC Tcount_Reg
Timer Scaling Factor 0x3FFB Tscale_Reg
SPORT0 Multichannel Receive 0x3FFA Sport0_Rx_Words1
 Word Enable Register (32-bit) 0x3FF9 Sport0_Rx_Words0
SPORT0 Multichannel Transmit 0x3FF8 Sport0_Tx_Words1
 Word Enable Register (32-bit) 0x3FF7 Sport0_Tx_Words0
SPORT0 Control Register 0x3FF6 Sport0_Ctrl_Reg
SPORT0 Serial Clock Divide Modulus 0x3FF5 Sport0_Sclkdiv
SPORT0 Rcv Frame Sync Divide Modulus 0x3FF4 Sport0_Rfsdiv
SPORT0 Autobuffer Control Register 0x3FF3 Sport0_Autobuf_Ctrl
SPORT1 Control Register 0x3FF2 Sport1_Ctrl_Reg
SPORT1 Serial Clock Divide Modulus 0x3FF1 Sport1_Sclkdiv
SPORT1 Rcv Frame Sync Divide Modulus 0x3FF0 Sport1_Rfsdiv
SPORT1 Autobuffer Control Register 0x3FEF Sport1_Autobuf_Ctrl
Programmable Flag & Composite Select 0x3FE6 Prog_Flag_Comp_Sel_Ctrl
Programmable Flag Data 0x3FE5 Prog_Flag_Data
BDMA Word Count 0x3FE4 BDMA_Word_Count
BDMA Control 0x3FE3 BDMA_Control
BDMA External Address 0x3FE2 BDMA_External_Adress
BDMA Internal Address 0x3FE1 BDMA_Internal_Address
IDMA Control 0x3FE0 IDMA_Control

32

A
D

S
P

-2
18

1
R

eg
is

te
rs

D
A

T
A

S
R

A
M

16
K

 X
 1

6

T
IM

E
R

T
P

E
R

IO
D

T
C

O
U

N
T

T
S

C
A

L
E

0x
3F

F
D

0x
3F

F
C

0x
3F

F
B

ID
M

A

P
o

rt

F
L

A
G

S

P
O

W
E

R
D

O
W

N
C

O
N

T
R

O
L

LO

G
IC

ID
M

A
A

A
L

U

M
A

C
S

H
IF

T
E

R

D
M

D
 B

U
S

D
A

G
 2

D
A

G
 1

P
M

D
 B

U
S

D
M

A
 B

U
S

P
M

A
 B

U
S

14 14 24 16

P
R

O
G

R
A

M
 S

E
Q

U
E

N
C

E
R

M
0

M
1

M
2

M
3

I3I0 I1 I2

L0 L1 L2 L3

C
N

TR

M
5

M
6

M
7

I7I4 I5 I6

O
W

R
C

N
T

R

L5 L6 L7

A
X

0
A

X
1

A
Y

1
A

Y
0

M
X

0
M

X
1

M
Y

1
M

Y
0

S
I

S
E

SB
R

X
1

TX
1

P
X

C
O

U
N

T

S
T

A
C

K
4

X
 1

4

A
S

T
A

T

S
T

A
T

U
S

S

T
A

C
K

12
 X

 2
5

M
S

T
A

T
IM

A
S

K

P
C

S

T
A

C
K

16
 X

 1
4

L
O

O
P

S

T
A

C
K

4
X

 1
8

IF
C

IC
N

T
L

S
S

TA
T

A
F

A
R

M
R

0
M

R
1

M
F

M
R

2
S

R
0

S
R

1

M
4

L4

D
M

 W
A

IT
 C

O
N

T
R

O
L

S
Y

S
T

E
M

 C
O

N
T

R
O

L

S
P

O
R

T
 0

R
X

0
TX

0

C
O

N
T

R
O

L
 R

E
G

IS
T

E
R

S

0x
3F

F
A

-0
x3

F
F

3

S
P

O
R

T
 1

C
O

N
T

R
O

L
 R

E
G

IS
T

E
R

S

0x
3F

F
2-

0x
3F

E
F

0x
3F

F
F

0x
3F

F
E

P
R

O
G

R
A

M
S

R
A

M
16

K
 X

 2
4

P
M

O
V

L
A

Y

D
M

O
V

L
A

Y

B
Y

T
E

 D
M

A

P
O

R
T

B
T

Y
P

E

B
IA

D

B
E

A
D

B
M

P
A

G
E

B
D

IR

B
W

C
O

U
N

T

P
R

O
G

R
A

M
M

A
B

L
E

I/O

REV. B

Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices.

a Serial-Port 16-Bit
SoundPort Stereo Codec

AD1847

® Analog Devices, Inc., 1996

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 617/329-4700 Fax: 617/326-8703

FEATURES

Single-Chip Integrated SD Digital Audio Stereo Codec

Supports the Microsoft Windows Sound System*

Multiple Channels of Stereo Input

Analog and Digital Signal Mixing

Programmable Gain and Attenuation

On-Chip Signal Filters

Digital Interpolation and Decimation

Analog Output Low-Pass

Sample Rates from 5.5 kHz to 48 kHz

44-Lead PLCC and TQFP Packages

Operation from +5 V Supplies

Serial Digital Interface Compatible with ADSP-21xx

Fixed-Point DSP

I
S
A

B
U
S

ASIC AD1847

DSP

Figure 1. Example System Diagram

External circuit requirements are limited to a minimal number
of low cost support components. Anti-imaging DAC output
filters are incorporated on-chip. Dynamic range exceeds 70 dB
over the 20 kHz audio band. Sample rates from 5.5 kHz to
48 kHz are supported from external crystals.

The Codec includes a stereo pair of ∑∆ analog-to-digital con-
verters (ADCs) and a stereo pair of ∑∆ digital-to-analog con-
verters (DACs). Inputs to the ADC can be selected from four
stereo pairs of analog signals: line 1, line 2, auxiliary (“aux”)
line #1, and post-mixed DAC output. A software-controlled
programmable gain stage allows independent gain for each
channel going into the ADC. The ADCs’ output can be digitally
mixed with the DACs’ input.

The pair of 16-bit outputs from the ADCs is available over a se-
rial interface that also supports 16-bit digital input to the DACs
and control/status information. The AD1847 can accept and
generate 16-bit twos-complement PCM linear digital data, 8-bit
unsigned magnitude PCM linear data, and 8-bit µ-law or A-law
companded digital data.

(Continued on page 7)

FUNCTIONAL BLOCK DIAGRAM

ANALOG
I/O

L

R

DIGITAL
I/O

CRYSTALS

2 2

2

S
E
R
I
A
L

P
O
R
T

OSCILLATORS

2.25V

REFERENCE

L

R

L

R

CLOCK
OUT

ATTEN

DIGITAL
SUPPLY

ANALOG
SUPPLY

M
U
X

L
R

L

R
L

R

L

R

BUS
MASTER

TIME SLOT
INPUT

TIME SLOT
OUTPUT
SERIAL DATA
OUTPUT

SERIAL DATA
INPUT

EXTERNAL
CONTROL

SERIAL BIT
CLOCK

FRAME
SYNC

RESET
LINE 1
INPUT

LINE 2
INPUT

AUX 1
INPUT

LINE
OUTPUT

AUX 2
INPUT

AD1847

∑

ATTEN/
MUTE ATTEN

POWER
DOWN

µ/A
LAW

µ/A
LAWATTEN

∑

∑

∑

∑∆ D/A
CONVERTER

∑∆ D/A
CONVERTER

µ/A
LAW

µ/A
LAW

GAIN

GAIN ∑∆ A/D
CONVERTER

∑∆ A/D
CONVERTER

GAIN/ATTEN/MUTE

GAIN/ATTEN
/MUTE

GAIN/ATTEN
/MUTE

ATTEN/
MUTE

PRODUCT OVERVIEW
The AD1847 SoundPort® Stereo Codec integrates key audio
data conversion and control functions into a single integrated
circuit. The AD1847 is intended to provide a complete, low
cost, single-chip solution for business, game audio and multi-
media applications requiring operation from a single +5 V sup-
ply. It provides a serial interface for implementation on a
computer motherboard, add-in or PCMCIA card. See Figure 1
for an example system diagram.

*Windows Sound System is a registered trademark of Microsoft Corp.
SoundPort is a registered trademark of Analog Devices, Inc.

STANDARD TEST CONDITIONS UNLESS OTHERWISE NOTED

Temperature 25 °C DAC Output Conditions
Digital Supply (VDD) 5.0 V 0 dB Attenuation
Analog Supply (VCC) 5.0 V Full-Scale Digital Inputs
Word Rate (FS) 48 kHz 16-Bit Linear Mode
Input Signal 1007 Hz No Output Load
Analog Output Passband 20 Hz to 20 kHz Mute Off
FFT Size 4096 ADC Input Conditions
VIH 2.4 V 0 dB Gain
VIL 0.8 V –3.0 dB Relative to Full Scale
VOH 2.4 V Line Input
VOL 0.4 V 16-Bit Linear Mode

ANALOG INPUT

Min Typ Max Units

Full-Scale Input Voltage (RMS Values Assume Sine Wave Input)
Line1, Line2, AUX1, AUX2 1 V rms

2.54 2.8 3.10 V p-p
Input Impedance

Line1, Line2, AUX1, AUX2† 10 kΩ
Input Capacitance† 15 pF

PROGRAMMABLE GAIN AMPLIFIER—ADC

Min Typ Max Units

Step Size (All Steps Tested, –30 dB Input) 1.10 1.5 1.90 dB
PGA Gain Range Span† 21.0 24.0 dB

AUXILIARY INPUT ANALOG AMPLIFIERS/ATTENUATORS

Min Typ Max Units

Step Size (+12 dB to –28.5 dB, Referenced to DAC Full Scale) 1.3 1.5 1.7 dB
(–30 dB to –34.5 dB, Referenced to DAC Full Scale) 1.1 1.5 1.9 dB

Input Gain/Attenuation Range Span† 45.5 47.5 dB
AUX Input Impedance† 10 kΩ

DIGITAL DECIMATION AND INTERPOLATION FILTERS†

Min Max Units

Passband 0 0.4 3 FS Hz
Passband Ripple –0.1 +0.1 dB
Transition Band 0.4 3 FS 0.6 3 FS Hz
Stopband 0.6 3 FS ∞ Hz
Stopband Rejection 74 dB
Group Delay 30/FS

Group Delay Variation Over Passband 0 µs

REV. B

AD1847–SPECIFICATIONS

–2–

ANALOG-TO-DIGITAL CONVERTERS

Min Typ Max Units

Resolution 16 Bits
Dynamic Range (–60 dB Input, THD+N Referenced to Full Scale, A-Weighted) 70 dB
THD+N (Referenced to Full Scale) 0.040 %

–68 dB
Signal-to-Intermodulation Distortion† 83 dB
ADC Crosstalk†

Line Inputs (Input L, Ground R, Read R; Input R, Ground L, Read L) –80 dB
Line1 to Line2 (Input Line1, Ground and Select Line2, Read Both Channels) –80 dB
Line to AUX1 –80 dB
Line to AUX2 –80 dB
Line to DAC –80 dB

Gain Error (Full-Scale Span Relative to VREFI) ±10 %
Interchannel Gain Mismatch (Difference of Gain Errors) ±0.2 dB
DC Offset ±55 LSB

DIGITAL-TO-ANALOG CONVERTERS

Min Typ Max Units

Resolution 16 Bits
Dynamic Range (–60 dB Input, THD+N Referenced to Full Scale, A-Weighted) 76 dB
THD+N (Referenced to Full Scale) 0.025 %

–72 dB
Signal-to-Intermodulation Distortion† 86 dB
Gain Error (Full-Scale Span Relative to VREFI) ±10 %
Interchannel Gain Mismatch (Difference of Gain Errors) ±0.2 dB
DAC Crosstalk† (Input L, Zero R, Measure R_OUT; Input R, Zero L, Measure L_OUT) –80 dB
Total Out-of-Band Energy† (Measured from 0.6 3 FS to 100 kHz) –50 dB
Audible Out-of-Band Energy (Measured from 0.6 3 FS to 22 kHz, Tested at FS = 5.5 kHz) –55 dB

DAC ATTENUATOR

Min Typ Max Units

Step Size (0 dB to –22.5 dB) (Tested at Steps 0 dB, –19.5) 1.3 1.5 1.7 dB
Step Size (–24 dB to –94 dB) 1.0 1.5 2.0 dB
Output Attenuation Range Span† –93 95 dB

DIGITAL MIX ATTENUATOR

Min Typ Max Units

Step Size (0 dB to –22.5 dB) (Tested at Steps 0 dB, –19.5) 1.3 1.5 1.7 dB
Step Size (–24 dB to –94 dB) 1.0 1.5 2.0 dB
Output Attenuation Range Span† –93.5 95.5 dB

ANALOG OUTPUT

Min Typ Max Units

Full-Scale Line Output Voltage 0.707 V rms
VREFI = 2.35* 1.80 2 2.20 V p-p

Line Output Impedance† 600 Ω
External Load Impedance 10 kΩ
Output Capacitance† 15 pF
External Load Capacitance 100 pF
VREF (Clock Running) 2.00 2.50 V
VREF Current Drive 100 µA
VREFI 2.35 V
Mute Attenuation of 0 dB –80 dB

Fundamental† (LOUT)
Mute Click† 8 mV

(|Muted Output Minus Unmuted
Midscale DAC Output|)

*Full-scale line output voltage scales with VREF (e.g., VOUT (typ) – 2.0 V 3 (VREF/2.35)).
†Guaranteed, Not Tested.

REV. B –3–

AD1847

AD1847

REV. B–4–

SYSTEM SPECIFICATIONS

Min Typ Max Units

System Frequency Response† ±0.3 dB
(Line In to Line Out, 20 Hz to 20 kHz)

Differential Nonlinearity† ±1/2 Bit
Phase Linearity Deviation† 1 Degrees

STATIC DIGITAL SPECIFICATIONS

Min Max Units

High Level Input Voltage (VIH)
Digital Inputs 2.0 V
XTAL1/2I 2.4 V

Low Level Input Voltage (VIL) 0.8 V
High Level Output Voltage (VOH) IOH = 1 mA 2.4 VDD V
Low Level Output Voltage (VOL) IOL = 4 mA 0.4 V
Input Leakage Current (GO/NOGO Tested) –10 +10 µA
Output Leakage Current (GO/NOGO Tested) –10 +10 µA

TIMING PARAMETERS (Guaranteed Over Operating Temperature Range)

Min Typ Max Units

Serial Frame Sync Period (t1) 1/0.5 FS µs
Clock to Frame Sync [SDFS] Propagation Delay (tPD1) 20 ns
Data Input Setup Time (tS) 15 ns
Data Input Hold Time (tH) 15 ns
Clock to Output Data Valid (tDV) 25 ns
Clock to Output Three-State [High-Z] (tHZ) 20 ns
Clock to Time Slot Output [TSO] Propagation Delay (tPD2) 20 ns
RESET and PWRDOWN Lo Pulse Width (tRPWL) 100 ns

POWER SUPPLY

Min Max Units

Power Supply Range – Digital & Analog 4.75 5.25 V
Power Supply Current – Operating (10 kΩ Line Out Load) 140 mA
Analog Supply Current – Operating (10 kΩ Line Out Load) 70 mA
Digital Supply Current – Operating (10 kΩ Line Out Load) 70 mA
Analog Power Supply Current – Power Down 400 µA
Digital Power Supply Current – Power Down 400 µA
Power Dissipation – Operating (Current 3 Nominal Supply) 750 mW
Power Dissipation – Power Down (Current 3 Nominal Supply) 4 mW
Power Supply Rejection (@ 1 kHz)†

(At Both Analog and Digital Supply Pins, ADCs) 45 dB
(At Both Analog and Digital Supply Pins, DACs) 55 dB

CLOCK SPECIFICATIONS†

Min Max Units

Input Clock Frequency 27 MHz
Recommended Clock Duty Cycle ±10 %
Initialization/Sample Rate Change Time

16.9344 MHz Crystal Selected at Power-Up 171 ms
24.576 MHz Crystal Selected at Power-Up 171 ms
16.9344 MHz Crystal Selected Subsequently 6 ms
24.576 MHz Crystal Selected Subsequently 6 ms

†Guaranteed, not tested.
 Specifications subject to change without notice.

AD1847

REV. B –5–

ABSOLUTE MAXIMUM RATINGS*

Min Max Units

Power Supplies
Digital (VDD) –0.3 6.0 V
Analog (VCC) –0.3 6.0 V

Input Current
(Except Supply Pins) ±10.0 mA

Analog Input Voltage (Signal Pins) –0.3 (VA+) + 0.3 V
Digital Input Voltage (Signal Pins) –0.3 (VD+) + 0.3 V
Ambient Temperature (Operating) 0 +70 °C
Storage Temperature –65 +150 °C
*Stresses greater than those listed under “Absolute Maximum Ratings” may cause

permanent damage to the device. This is a stress rating only and functional
operation of the device at these or any other conditions above those indicated in
the operational section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.

ORDERING GUIDE

Temperature Package Package
Model Range Description Option*

AD1847JP 0°C to +70°C 44-Lead PLCC P-44A
AD1847JST 0°C to +70°C 44-Lead TQFP ST-44

*P = PLCC; ST = TQFP.

WARNING!

ESD SENSITIVE DEVICE

CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection.
Although the AD1847 features proprietary ESD protection circuitry, permanent damage may
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD
precautions are recommended to avoid performance degradation or loss of functionality.

44-Lead PLCC 44-Lead TQFP

R
_L

IN
E

2

R
FI

LT

L
_L

IN
E

2

L
_L

IN
E

1

G
N

D
A

G
N

D
A

L
F

IL
T

L
_A

U
X

1

R
_A

U
X

1

R
_O

U
T

V
C

C

S
D

F
S

S
D

O

V
D

D

S
C

L
K

C
L

K
O

U
T

S
D

I

G
N

D
D

X
T

A
L

2I

X
T

A
L

1O

X
T

A
L

1I

X
T

A
L

2O

VDD

GNDD

GNDD

VDD

BM

XCTL1

XCTL0

R_AUX2

L_OUT

N/C

L_AUX2

44126 45

21 24232218 2019

39

38

35

34

33

37

36

3

7

8

11

12

13

9

10

404142

25 282726

43

31

30

29

32

15

16

17

14

Top View
(Not to Scale)

AD1847JP

TSO

TSI

RESET

PWRDOWN

VCC

VDD

GNDD

VREFI

VREF

R_LINE1

GNDA

N/C = NO CONNECT

44
 S

D
F

S
43

 S
D

O
42

 S
D

I
41

 G
N

D
D

40
 V

D
D

39
 S

C
L

K
38

 C
L

K
O

U
T

37
 X

T
A

L
2O

36
 X

T
A

L
2I

35
 X

T
A

L
1O

34
 X

T
A

L
1I

33
32
31
30
29
28
27
26
25
24

23

PIN 1 IDENTIFIER

R_LINE1

VREF

VREFI

GNDA

VCC

PWRDOWN
RESET
GNDD

VDD

TSI
TSO 1

2
3
4

5
6
7
8
9

11
10

VDD
GNDD
XCTL1
XCTL0
GNDD
VDD

BM
L_AUX2
R_AUX2
L_OUT

N/C

R
_L

IN
E

2
12

 R
F

IL
T

 1
3

 G
N

D
A

 1
4

 L
F

IL
T

 1
5

 L
_L

IN
E

2
16

 L
_L

IN
E

1
17

 G
N

D
A

 1
8

 L
_A

U
X

1
20

 R
_A

U
X

1
21

 R
_O

U
T

 2
2

 V
C

C
 1

9

Top View
(Not to Scale)

AD1847JST

N/C = NO CONNECT

PINOUTS

AD1847

REV. B–6–

PIN DESCRIPTIONS
Parallel Interface

Pin Name PLCC TQFP I/O Description

SCLK 1 39 I/O Serial Clock. SCLK is a bidirectional signal that supplies the clock as an output to the
serial bus when the Bus Master (BM) pin is driven HI and accepts the clock as an input
when the BM pin is driven LO. The serial clock output is fixed at 12.288 MHz when
XTAL1 is selected, and 11.2896 MHz when XTAL2 is selected. SCLK runs continu-
ously. An AD1847 should always be configured as the serial bus master unless it is a slave
in a daisy-chained multiple codec system.

SDFS 6 44 I/O Serial Data Frame Sync. SDFS is a bidirectional signal that supplies the frame synchroni-
zation signal as an output to the serial bus when the Bus Master (BM) pin is driven HI
and accepts the frame synchronization signal as an input when the BM pin is driven LO.
The SDFS frequency powers up at one half of the AD1847 sample rate (i.e., FRS bit = 0)
with two samples per frame and can be programmed to match the sample rate (i.e., FRS
bit = 1) with one sample per frame. An AD1847 should always be configured as the serial
bus master unless it is a slave in a daisy-chained multiple codec system.

SDI 4 42 I Serial Data Input. SDI is used by peripheral devices such as the host CPU or a DSP to
supply control and playback data information to the AD1847. All control and playback
transfers are 16 bits long, MSB first.

SDO 5 43 O Serial Data Output. SDO is used to supply status/index readback and capture data infor-
mation to peripheral devices such as the host CPU or a DSP. All status/index readback
and capture data transfers are 16 bits long, MSB first. Three-state output driver.

RESET 11 5 I Reset. The RESET signal is active LO. The assertion of this signal will initialize the
on-chip registers to their default values. See the “Control Register Definitions” section for
a description of the contents of the control registers after RESET is deasserted.

PWRDOWN 12 6 I Powerdown. The PWRDOWN signal is active LO. The assertion of this signal will reset
the on-chip control registers (identically to the RESET signal) and will also place the
AD1847 in a low power consumption mode. VREF and all analog circuitry are disabled.

BM 33 27 I Bus Master. The assertion (HI) of this signal indicates that the AD1847 is the serial bus
master. The AD1847 will then supply the serial clock (SCLK) and the frame sync (SDFS)
signals for the serial bus. One and only one AD1847 should always be configured as the
serial bus master. If BM is connected to logic LO, the AD1847 is configured as a bus
slave, and will accept the SCLK and SDFS signals as inputs. An AD1847 should only be
configured as a serial bus slave when an AD1847 serial bus master already exists, in
daisy-chained multiple codec systems.

TSO 7 1 O Time Slot Output. This signal is asserted HI by the AD1847 coincidentally with the LSB
of the last time slot used by the AD1847. Used in daisy-chained multiple codec systems.

TSI 8 2 I Time Slot Input. The assertion of this signal indicates that the AD1847 should immedi-
ately use the next three time slots (TSSEL = 1) or the next six time slots (TSSEL = 0)
and then activate the TSO pin to enable the next device down the TDM chain. TSI
should be driven LO when the AD1847 is the bus master or in single codec systems. Used
in daisy-chained multiple codec systems.

CLKOUT 44 38 O Clock Output. This signal is the buffered version of the crystal clock output and the fre-
quency is dependent on which crystal is selected. This pin can be three-stated by driving
the BM pin LO or by programming the CLKTS bit in the Pin Control Register. See the
“Control Registers” section for more details. The CLKOUT frequency is 12.288 MHz
when XTAL1 is selected and 16.9344 MHz when XTAL2 is selected.

Analog Signals

Pin Name PLCC TQFP I/O Description

L_LINE1 23 17 I Left Line Input #1. Line level input for the #1 left channel.
R_LINE1 17 11 I Right Line Input #1. Line level input for the #1 right channel.
L_LINE2 22 16 I Left Line Input #2. Line level input for the #2 left channel.
R_LINE2 18 12 I Right Line Input #2. Line level input for the #2 right channel.
L_AUX1 26 20 I Left Auxiliary Input #1. Line level input for the AUX1 left channel.
R_AUX1 27 21 I Right Auxiliary Input #1. Line level input for the AUX1 right channel.
L_AUX2 32 26 I Left Auxiliary Input #2. Line level input for the AUX2 left channel.
R_AUX2 31 25 I Right Auxiliary Input #2. Line level input for the AUX2 right channel.
L_OUT 30 24 O Left Line Output. Line level output for the left channel.
R_OUT 28 22 O Right Line Output. Line level output for the right channel.

AD1847

REV. B –7–

Miscellaneous

Pin Name PLCC TQFP I/O Description

XTAL1I 40 34 I 24.576 MHz Crystal #1 Input.

XTAL1O 41 35 O 24.576 MHz Crystal #1 Output.

XTAL2I 42 36 I 16.9344 MHz Crystal #2 Input.

XTAL2O 43 37 O 16.9344 MHz Crystal #2 Output.

XCTL1:O 37 & 36 31 & 30 O External Control. These TTL signals reflect the current status of register bits inside the
AD1847. They can be used for signaling or to control external logic.

VREF 16 10 O Voltage Reference. Nominal 2.25 volt reference available externally as a voltage datum
for dc-coupling and level-shifting. VREF should not have any signal dependent load.

VREFI 15 9 I Voltage Reference Internal. Voltage reference filter point for external bypassing only.

L_FILT 21 15 I Left Channel Filter Capacitor. This pin requires a 1.0 µF capacitor to analog ground
for proper operation.

R_FILT 19 13 I Right Channel Filter Capacitor. This pin requires a 1.0 µF capacitor to analog ground
for proper operation.

NC 29 23 No Connect. Do not connect.

Power Supplies

Pin Name PLCC TQFP I/O Description

VCC 13 & 25 7 & 19 I Analog Supply Voltage (+5 V).

GNDA 14, 20, 24 8, 14, 18 I Analog Ground.

VDD 2, 9, 34, 39 40, 3, 28, 33 I Digital Supply Voltage (+5 V).

GNDD 3, 10, 35, 38 41, 4, 29, 32 I Digital Ground.

(Continued from page 1)

The ∑∆ DACs are preceded by a digital interpolation filter. An
attenuator provides independent user volume control over each
DAC channel. Nyquist images are removed from the DACs’
analog stereo output by on-chip switched-capacitor and
continuous-time filters. Two stereo pairs of auxiliary line-level
inputs can also be mixed in the analog domain with the DAC
output.

The AD1847 serial data interface uses a Time Division Multi-
plex (TDM) scheme that is compatible with DSP serial ports
configured in Multi-Channel Mode with 32 16-bit time slots
(i.e., SPORT0 on the ADSP-2101, ADSP-2115, etc.).

AUDIO FUNCTIONAL DESCRIPTION
This section overviews the functionality of the AD1847 and is
intended as a general introduction to the capabilities of the de-
vice. As much as possible, detailed reference information has
been placed in “Control Registers” and other sections. The user
is not expected to refer repeatedly to this section.

Analog Inputs
The AD1847 SoundPort Stereo Codec accepts stereo line-level
inputs. All inputs should be capacitively coupled (ac-coupled) to
the AD1847. LINE1, LINE2, and AUX1, and post-mixed DAC
output analog stereo signals are multiplexed to the internal pro-
grammable gain amplifier (PGA) stage.

The PGA following the input multiplexer allows independent
selectable gains for each channel from 0 to 22.5 dB in +1.5 dB
steps. The Codec can operate either in a global stereo mode or
in a global mono mode with left-channel inputs appearing at
both channel outputs.

Analog Mixing
AUX1 and AUX2 analog stereo signals can be mixed in the ana-
log domain with the DAC output. Each channel of each auxil-
iary analog input can be independently gained/attenuated from
+12 dB to –34.5 dB in –1.5 dB steps or completely muted. The
post-mixed DAC output is available on L_OUT and R_OUT
externally and as an input to the ADCs.

Even if the AD1847 is not playing back data from its DACs, the
analog mix function can still be active.

Analog-to-Digital Datapath
The ∑∆ ADCs incorporate a proprietary fourth-order modula-
tor. A single pole of passive filtering is all that is required for
antialiasing the analog input because of the ADC’s high 64
times oversampling ratio. The ADCs include digital decimation
filters that low-pass filter the input to 0.4 3 FS. (“FS’’ is the
word rate or “sampling frequency.”) ADC input overrange con-
ditions will cause status bits to be set that can be read.

Digital-to-Analog Datapath
The ∑∆ DACs contain a programmable attenuator and a low-
pass digital interpolation filter. The anti-imaging interpolation
filter oversamples and digitally filters the higher frequency im-
ages. The attenuator allows independent control of each DAC
channel from 0 dB to –94.5 dB in 1.5 dB steps plus full mute.
The DACs’ ∑∆ noise shapers also oversample and convert the
signal to a single-bit stream. The DAC outputs are then filtered
in the analog domain by a combination of switched-capacitor
and continuous-time filters. These filters remove the very high
frequency components of the DAC bitstream output. No exter-
nal components are required.

AD1847

REV. B–8–

Changes in DAC output attenuation take effect only on zero
crossings of the digital signal, thereby eliminating “zipper” noise
on playback. Each channel has its own independent zero-crossing
detector and attenuator change control circuitry. A timer guar-
antees that requested volume changes will occur even in the ab-
sence of an input signal that changes sign. The time-out period
is 8 milliseconds at a 48 kHz sampling rate and 48 milliseconds
at an 8 kHz sampling rate. (Time-out [ms] ≈ 384/FS [kHz]).

Digital Mixing
Stereo digital output from the ADCs can be mixed digitally with
the input to the DACs. Digital output from the ADCs going out
of the serial data port is unaffected by the digital mix. Along the
digital mix datapath, the 16-bit linear output from the ADCs is
attenuated by an amount specified with control bits. Both chan-
nels of the monitor data are attenuated by the same amount.
(Note that internally the AD1847 always works with 16-bit
PCM linear data, digital mixing included; format conversions
take place at the input and output.)

Sixty-four steps of –1.5 dB attenuation are supported to
–94.5 dB. The digital mix datapath can also be completely
muted, preventing any mixing of the digital input with the digi-
tal output. Note that the level of the mixed signal is also a func-
tion of the input PGA settings, since they affect the ADCs’
output.

The attenuated digital mix data is digitally summed with the
DAC input data prior to the DACs’ datapath attenuators. The
digital sum of digital mix data and DAC input data is clipped at
plus or minus full scale and does not wrap around. Because
both stereo signals are mixed before the output attenuators, mix
data is attenuated a second time by the DACs’ datapath
attenuators.

Analog Outputs
A stereo line-level output is available at external pins. Other
output types such as headphone and speaker must be imple-
mented in external circuitry. The stereo line-level outputs
should be capacitively coupled (ac-coupled) to the external cir-
cuitry. Each channel of this output can be independently
muted. When muted, the outputs will settle to a dc value near
VREF, the midscale reference voltage.

Digital Data Types
The AD1847 supports four global data types: 16-bit twos-
complement linear PCM, 8-bit unsigned linear PCM,
companded µ-law, and 8-bit companded A-law, as specified by
control register bits. Eight-bit data is always left-justified in 16-
bit fields; in other words, the MSBs of all data types are always
aligned; in yet other words, full-scale representations in all four
formats correspond to equivalent full-scale signals. The eight
least significant bit positions of 8-bit data in 16-bit fields are ig-
nored on digital input and zoned on digital output (i.e., truncated).

The 16-bit PCM data format is capable of representing 96 dB of
dynamic range. Eight-bit PCM can represent 48 dB of dynamic
range. Companded µ-law and A-law data formats use nonlinear
coding with less precision for large-amplitude signals. The loss
of precision is compensated for by an increase in dynamic range
to 64 dB and 72 dB, respectively.

On input, 8-bit companded data is expanded to an internal lin-
ear representation, according to whether µ-law or A-law was

specified in the Codec’s internal registers. Note that when µ-law
compressed data is expanded to a linear format, it requires 14
bits. A-law data expanded requires 13 bits.

EXPANSION

DAC INPUT

MSB LSB

15 0

MSB

15 0

MSB

15 0

COMPRESSED
INPUT DATA

LSB

3/2 2/1

LSB

3/2 2/1

 0 0 0 / 0 0

8 7

Figure 2. A-Law or µ-Law Expansion

When 8-bit companding is specified, the ADCs’ linear output is
compressed to the format specified.

TRUNCATION

COMPRESSION

MSB LSB

15 0

MSB LSB

15 0

MSB LSB

15 0

3/2 2/1

ADC OUTPUT

 0 0 0 0 0 0 0 0

8 7

Figure 3. A-Law or µ-Law Compression

Note that all format conversions take place at input or output.
Internally, the AD1847 always uses 16-bit linear PCM represen-
tations to maintain maximum precision.

Power Supplies and Voltage Reference
The AD1847 operates from +5 V power supplies. Independent
analog and digital supplies are recommended for optimal perfor-
mance though excellent results can be obtained in single-supply
systems. A voltage reference is included on the Codec and its
2.25 V buffered output is available on an external pin (VREF).
The reference output can be used for biasing op amps used in
dc coupling. The internal reference must be externally bypassed
to analog ground at the VREFI pin, and must not be used to bias
external circuitry.

Clocks and Sample Rates
The AD1847 operates from two external crystals, XTAL1 and
XTAL2. The two crystal inputs are provided to generate a wide
range of sample rates. The oscillators for these crystals are on
the AD1847, as is a multiplexer for selecting between them.
They can be overdriven with external clocks by the user, if so
desired. At a minimum, XTAL1 must be provided since it is se-
lected as the reset default. If XTAL2 is not used, the XTAL2
input pin should be connected to ground. The recommended
crystal frequencies are 16.9344 MHz and 24.576 MHz. From
them, the following sample rates can be selected: 5.5125, 6.615,
8, 9.6, 11.025, 16, 18.9, 22.05, 27.42857, 32, 33.075, 37.8,
44.1, 48 kHz.

AD1847

REV. B –9–

CONTROL REGISTERS
Control Register Mapping
The AD1847 has six 16-bit and thirteen 8-bit on-chip user-
accessible control registers. Control information is sent to the
AD1847 in the 16-bit Control Word. Status information is sent
from the AD1847 in the 16-bit Status Word. Playback Data and
Capture Data each have two 16-bit registers for the right and
left channels. Additional 8-bit Index Registers are accessed via
indirect addressing in the AD1847 Control Word. [Index Regis-
ters are reached with indirect addressing.] The contents of an
indirect addressed Index Register may be readback by the host
CPU or DSP (during the Status Word/Index Readback time
slot) by setting the Read Request (RREQ) bit in the Control
Word. Note that each 16-bit register is assigned its own time
slot, so that the AD1847 always consumes six 16-bit time slots.
Figure 4 shows the mapping of the Control Word, Status Word/
Index Readback and Data registers to time slots when TSSEL = 0.
TSSEL = 0 is used when the SDI and SDO pins are tied to-
gether (i.e., “1-wire” system). This configuration is efficient in
terms of component interconnect (one bidirectional wire for se-
rial data input and output), but inefficient in terms of time slot
usage (six slots consumed on single bidirectional Time Division
Multiplexed [TDM] serial bus). When TSSEL = 0, serial data
input to the AD1847 occurs sequentially with serial data output
from the AD1847 (i.e., Control Word, Left Playback and Right
Playback data is received on the SDI pin, then the Status Word/
lndex Readback, Left Capture and Right Capture data is trans-
mitted on the SDO pin).

Slot Register Name (16-Bit)

0 Control Word Input
1 Left Playback Data Input
2 Right Playback Data Input
3 Status Word/Index Readback Output
4 Left Capture Data Output
5 Right Capture Data Output

Figure 4. Control Register Mapping with TSSEL = 0

Figure 5 shows the mapping of the Control Word, Status Word/
Index Readback and Data registers to time slots when TSSEL =
1. Note that the six 16-bit registers “share” three time slots.
TSSEL = 1 is used when the SDI and SDO pins are indepen-
dent inputs and output (i.e., “2-wire” system). This configura-
tion is inefficient in terms of component interconnect (two
unidirectional wires for serial data input and output), but effi-
cient in terms of time slot usage (three slots consumed on each
of two unidirectional TDM serial buses). When TSSEL = 1, se-
rial data input to the AD1847 occurs concurrently with serial
data output from the AD1847 (i.e., Control Word reception on
the SDI pin occurs simultaneously with Status Word/lndex
Readback transmission on the SDO pin).

Slot Register Name (16-Bit)

0 Control Word Input
1 Left Playback Data Input
2 Right Playback Data Input
0 Status Word/Index Readback Output
1 Left Capture Data Output
2 Right Capture Data Output

Figure 5. Control Register Mapping with TSSEL = 1

An Index Register readback request to an invalid index address
(11, 14 and 15) will return the contents of the Status Word. At-
tempts to write to an invalid index address (11, 14 and 15) will
have no effect on the AD1847. As mentioned above, the RREQ
bit of the Control Word is used to request Status Word output
or Index Register readback output during either time slot 3
(TSSEL = 0) or time slot 0 (TSSEL = 1). RREQ is set for In-
dex Register readback output, and reset for Status Word output.
When Index Register readback is requested, the Index Readback
bit format is the same as the Control Word bit format. All status
bits are updated by the AD1847 before a new Control Word is
received (i.e., at frame boundaries). Thus, if TSSEL = 0 and
the Control Word written at slot 0 causes some status bits to
change, the change will show up in the Status Word transmitted
at slot 3 of the same sample.

AD1847

REV. B–10–

Control Word (16-Bit)

Data 15 Data 14 Data 13 Data 12 Data 11 Data 10 Data 9 Data 8
CLOR MCE RREQ res IA3 IA2 IA1 IA0

Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0
DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0

DATA7:0 Index Register Data. These bits are the data for the desired AD1847 Index Register referenced by the Index Address.
Written by the host CPU or DSP to the AD1847.

IA3:0 Index Register Address. These bits define the indirect address of the desired AD1847 Index Register. Written by the host
CPU or DSP to the AD1847.

RREQ Read Request. Setting this bit indicates that the current transfer is a request by the host CPU or DSP for readback of the
contents of the indirect addressed Index Register. When this bit is set (RREQ = HI), the AD1847 will not transmit its
Status Word in the following Status Word Index readback slot, but will instead transmit the data in the Index Register
specified by the Index Address. Although the Index Readback is transmitted in the following Status Word/Index
Readback time slot, the format of the Control Word is used (i.e., CLOR, MCE, RREQ and the Index Register Address
in the most significant byte, and the readback Index Register Data in the least significant byte). When this bit is reset
(RREQ = LO), the AD1847 will transmit its Status Word in the following Status Word Index Readback time slot.

A read request is serviced in the next available Index Readback time slot. If TSSEL = 0, the Index Register readback
data is transmitted in slot 3 of the same sample. If TSSEL = 1, Index Register readback data is transmitted in slot 0 of
the next sample. If TSSEL changes from 0 to 1, Index Register readback will occur twice, in slot 3 of the current sample,
and slot 0 of the next. If TSSEL changes from 1 to 0, the last read request is lost.

res Reserved for future expansion. Write zeros (LO) to all reserved bits.

MCE Mode Change Enable. This bit must be set (MCE = HI) whenever protected control register bits of the AD1847 are
changed. The Data Format register, the Miscellaneous Information register, and the ACAL bit of the Interface Configu-
ration register can NOT be changed unless this bit is set. The DAC outputs will be muted when MCE is set. The user
must mute the AUX1 and AUX2 channels when this bit is set (no audio activity should occur). Written by the host CPU
or DSP to the AD1847. This bit is HI after reset.

CLOR Clear Overrange. When this bit is set (CLOR = HI), the overrange bits in the Status Word are updated every sample.
When this bit is reset (CLOR = LO), the overrange bits in the Status Word will record the largest overrange value. The
largest overrange value is sticky until the CLOR bit is set. Written by the host CPU or DSP to the AD1847. Since there
can be up to 2 samples in the data pipeline, a change to CLOR may take up to 2 samples periods to take effect. This bit
is HI after reset.

Immediately after reset, the contents of this register is: 1100 0000 0000 0000 (C000h).

Left/Right Playback/Capture Data (16-Bit)
The data formats for Left Playback, Right Playback, Left Capture and Right Capture are all identical.

Data 15 Data 14 Data 13 Data 12 Data 11 Data 10 Data 9 Data 8
DATA15 DATA14 DATA13 DATA12 DATA11 DATA10 DATA9 DATA8

Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0
DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0

DATA15:0 Data Bits. These registers contain the 16-bit, MSB first data for capture and playback. The host CPU or DSP reads the
capture data from the AD1847. The host CPU or DSP writes the playback data to the AD1847. For 8-bit linear or 8-bit
companded modes, only DATA15:8 contain valid data; DATA7:0 are ignored during capture, and are zeroed during
playback. Mono mode plays back the same audio sample on both left and right channels. Mono capture only captures
data from the left audio channel. See “Serial Data Format” Timing Diagram.

Immediately after reset, the content of these registers is: 0000 0000 0000 0000 (0000h).

AD1847

REV. B –11–

Status Word (16-Bit)

Data 15 Data 14 Data 13 Data 12 Data 11 Data 10 Data 9 Data 8
res res RREQ res ID3 ID2 ID1 ID0

Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0
res res ORR1 ORR0 ORL1 ORL0 ACI INIT

INIT Initialization. This bit is an indication to the host that frame syncs will stop and the serial bus will be shut down. INIT is
set HI on the last valid frame. It is reset LO for all other frames. Read by the host CPU or DSP from the AD1847.

The INIT bit is set HI on the last sample before the serial interface is inactivated. The only condition under which the
INIT bit is set is when a different sample rate is programmed. If FRS = 0 (32 slots per frame, two samples per frame)
and the sample rate is changed in the first sample of the 32 slot frame (i.e., during slots 0 through 15), the INIT bit will
be set on the second sample of that frame (i.e., during slots 16 through 31). If FRS = 0 and the sample rate is changed in
the second sample of the 32 slot frame, the INIT bit will be set on the second sample of the following frame.

ACI Autocalibrate In-Progress. This bit indicates that autocalibration is in progress or the Mode Change Enable (MCE) state
has been recently exited. When exiting the MCE state with the ACAL bit set, the ACI bit will be set HI for 384 sample
periods. When exiting the MCE state with the ACAL bit reset, the ACAL bit will be set HI for 128 sample periods, indi-
cating that offset and filter values are being restored. Read by the host CPU or DSP from the AD1847.

0 Autocalibration not in progress

1 Autocalibration is in progress

ACI clear (i.e., reset or LO) should be recognized by first polling for a HI on the sample after the MCE bit is reset, and
then polling for a LO. Note that it is important not to start polling until one sample after MCE is reset, because if MCE
is set while ACI is HI, an ACI LO on the following sample will suggest a false clear of ACI.

ORL1:0 Overrange Left Detect. These bits indicate the overrange on the left input channel. Read by the host CPU or DSP from
the AD1847.

0 Greater than –1.0 dB underrange

1 Between –1.0 dB and 0 dB underrange

2 Between 0 dB and 1.0 dB overrange

3 Greater than 1.0 dB overrange

ORR1:0 Overrange Right Detect. These bits indicate the overrange on the right input channel. Read by the host CPU or DSP
from the AD1847.

0 Greater than –1.0 dB underrange

1 Between –1.0 dB and 0 dB underrange

2 Between 0 dB and 1.0 dB overrange

3 Greater than 1.0 dB overrange

ID3:0 AD1847 Revision ID. These four bits define the revision level of the AD1847. The first version of the AD1847 is desig-
nated ID = 0001. Read by the host CPU or DSP from the AD1847.

RREQ This bit is reset LO for the Status Word, echoing the RREQ state written by the host CPU or DSP in the previous Con-
trol Word. Read by the host CPU or DSP from the AD1847.

res Reserved for future expansion. All reserved bits read zero (LO).

Immediately after reset, the contents of this register is: 0000 0001 0000 0000 (0100h).

AD1847

REV. B–12–

Index Readback (16-Bit)

Data 15 Data 14 Data 13 Data 12 Data 11 Data 10 Data 9 Data 8
CLOR MCE RREQ res IA3 IA2 IA1 IA0

Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0
DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0

DATA7:0 Index Register Data. These bits are the readback data from the desired AD1847 Index Register referenced by the Index
Address from the previous Control Word (with the RREQ bit set). Read by the host CPU or DSP from the AD1847.

IA3:0 Index Register Address. These bits echo the indirect address (written during the previous Control Word (with the RREQ
bit set) of the desired AD1847 Index Register to be readback. Read by the host CPU or DSP from the AD1847.

RREQ Read Request. This bit is set HI for Index Readback, echoing the RREQ state written by the host CPU or DSP in the
previous Control Word. Read by the host CPU or DSP from the AD1847.

res Reserved for future expansion. All reserved bits read zero (LO).

MCE Mode Change Enable. This bit echoes the MCE state written by the host CPU or DSP during the previous* Control
Word (with the RREQ bit set). Read by the host CPU or DSP from the AD1847.

CLOR Clear Overrange. This bit echoes the CLOR state written by the host CPU or DSP during the previous Control Word
(with the RREQ bit set). Read by the host CPU or DSP from the AD1847.

Immediately after reset, the contents of this register is: 1110 0000 0000 0000 (E000h).

Indirect Mapped Registers
Following in Figure 6 is a table defining the mapping of AD1847 8-bit Index Registers to Index Address. These registers are accessed
by writing the appropriate 4-bit Index Address in the Control Word.

Index Register Name

0 Left Input Control
1 Right Input Control
2 Left Aux #1 Input Control
3 Right Aux #l Input Control
4 Left Aux #2 Input Control
5 Right Aux #2 Input Control
6 Left DAC Control
7 Right DAC Control
8 Data Format
9 Interface Configuration

10 Pin Control
11 Invalid Address
12 Miscellaneous Information
13 Digital Mix Control
14 Invalid Address
15 Invalid Address

Figure 6. Index Register Mapping

A detailed description of each of the Index Registers is given below.

AD1847

REV. B –13–

Left Input Control Register (Index Address 0)

IA3:0 Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

0000 LSS1 LSS0 res res LIG3 LIG2 LIG1 LIG0

LIG3:0 Left Input Gain Select. The least significant bit of this 16-level gain select represents +1.5 dB. Maximum gain is
+22.5 dB.

res Reserved for future expansion. Write zeros (LO) to all reserved bits.

LSS1:0 Left Input Source Select. These bits select the input source for the left gain stage preceding the left ADC.

0 Left Line 1 Source Selected
1 Left Auxiliary 1 Source Selected
2 Left Line 2 Source Selected
3 Left Line 1 Post-Mixed Output Loopback Source Selected

This register’s initial state after reset is: 0000 0000 (00h).

Right Input Control Register (Index Address 1)

IA3:0 Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

0001 RSS1 RSS0 res res RIG3 RIG2 RIG1 RIG0

RIG3:0 Right Input Gain Select. The least significant bit of this 16-level gain select represents +1.5 dB. Maximum gain is
+22.5 dB.

res Reserved for future expansion. Write zeros (LO) to all reserved bits.

RSS1:0 Right Input Source Select. These bits select the input source for the right gain stage preceding the right ADC.

0 Right Line 1 Source Selected
1 Right Auxiliary 1 Source Selected
2 Right Line 2 Source Selected
3 Right Line 1 Post-Mixed Output Loopback Source Selected

This register’s initial state after reset is: 0000 0000 (00h).

Left Auxiliary #1 Input Control Register (Index Address 2)

IA3:0 Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

0010 LMX1 res res LX1G4 LX1G3 LX1G2 LX1G1 LX1G0

LX1G4:0 Left Auxiliary Input #1 Gain Select. The least significant bit of this 32-level gain/attenuate select represents –1.5 dB.
LX1G4:0 = 0 produces a +12 dB gain. LX1G4:0 = “01000” (8 decimal) produces 0 dB gain. Maximum attenuation is
–34.5 dB. Gains referred to 2.0 V p-p full-scale output level.

res Reserved for future expansion. Write zeros (LO) to all reserved bits.

LMX1 Left Auxiliary #1 Mute. This bit, when set HI, will mute the left channel of the Auxiliary #1 input source. This bit is set
HI after reset.

This register’s initial state after reset is: 1000 0000 (80h).

Right Auxiliary #1 Input Control Register (Index Address 3)

IA3:0 Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

0011 RMX1 res res RX1G4 RX1G3 RX1G2 RX1G1 RX1G0

RX1G4:0 Right Auxiliary Input #1 Gain Select. The least significant bit of this 32-level gain/attenuate select represents –1.5 dB.
RX1G4:0 = 0 produces a +12 dB gain. RX1G4:0 = “01000” (8 decimal) produces 0 dB gain. Maximum attenuation is
–34.5 dB. Gains referred to 2.0 V p-p full-scale output level.

res Reserved for future expansion. Write zeros (LO) to all reserved bits.

RMX1 Right Auxiliary #1 Mute. This bit, when set to HI, will mute the right channel of the Auxiliary #1 input source. This bit is
set to HI after reset.

This register’s initial state after reset is: 1000 0000 (80h).

AD1847

REV. B–14–

Left Auxiliary #2 Input Control Register (Index Address 4)

IA3:0 Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

0100 LMX2 res res LX2G4 LX2G3 LX2G2 LX2G1 LX2G0

LX2G4:0 Left Auxiliary #2 Gain Select. The least significant bit of this 32-level gain/attenuate select represents –1.5 dB.
LX2G4:0 = 0 produces a +12 dB gain. LX2G4:0 = “01000” (8 decimal) produces 0 dB gain. Maximum attenuation is
–34.5 dB. Gains referred to 2.0 V p-p full-scale output level.

res Reserved for future expansion. Write zeros (LO) to all reserved bits.

LMX2 Left Auxiliary #2 Mute. This bit, when set HI, will mute the left channel of the Auxiliary #2 input source. This bit is HI
after reset.

This register’s initial state after reset is: 1000 0000 (80h).

Right Auxiliary #2 Input Control Register (Index Address 5)

IA3:0 Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

0101 RMX2 res res RX2G4 RX2G3 RX2G2 RX2G1 RX2G0

RX2G4:0 Right Auxiliary #2 Gain Select. The least significant bit of this 32-level gain/attenuate select represents –1.5 dB.
RX2G4:0 = 0 produces a +12 dB gain. RX2G4:0 = “01000” (8 decimal) produces 0 dB gain. Maximum attenuation is
–34.5 dB. Gains referred to 2.0 V p-p full-scale output level.

res Reserved for future expansion. Write zeros (LO) to all reserved bits.

RMX2 Right Auxiliary #2 Mute. This bit, when set HI, will mute the right channel of the Auxiliary #2 input source. This bit is
HI after reset.

This register’s initial state after reset is: 1000 0000 (80h).

Left DAC Control Register (Index Address 6)

IA3:0 Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

0110 LDM res LDA5 LDA4 LDA3 LDA2 LDA1 LDA0

LDA5:0 Left DAC Attenuate Select. The least significant bit of this 64-level attenuate select represents –1.5 dB. LDA5:0 = 0 pro-
duces a 0 dB attenuation. Maximum attenuation is –94.5 dB.

res Reserved for future expansion. Write zeros (LO) to all reserved bits.

LDM Left DAC Mute. This bit, when set HI, will mute the left channel output. Auxiliary inputs are muted independently with
the Left Auxiliary Input Control Registers. This bit is HI after reset.

This register’s initial state after reset is: 1000 0000 (80h).

Right DAC Control Register (Index Address 7)

IA3:0 Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

0111 RDM res RDA5 RDA4 RDA3 RDA2 RDA1 RDA0

RDA5:0 Right DAC Attenuate Select. The least significant bit of this 64-level attenuate select represents –1.5 dB. RDA5:0 = 0
produces a 0 dB attenuation. Maximum attenuation must be at least –94.5 dB.

res Reserved for future expansion. Write zeros (LO) to all reserved bits.

RDM Right DAC Mute. This bit, when set HI, will mute the right DAC output. Auxiliary inputs are muted independently with
the Right Auxiliary Input Control Registers. This bit is HI after reset.

This register’s initial state after reset is: 1000 0000 (80h).

AD1847

REV. B –15–

Data Format Register (Index Address 8)

IA3:0 Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

1000 res FMT C/L S/M CFS2 CFS1 CFS0 CSL

The contents of this register can NOT be changed except when the AD1847 is in the Mode Change Enable (MCE) state (i.e., the MCE bit in
the Control Word is HI). Write attempts to this register when the AD1847 is not in the MCE state will not be successful.

CSL Clock Source Select. This bit selects the clock source to be used for the audio sample rate.

0 XTAL1 (24.576 MHz)

1 XTAL2 (16.9344 MHz)

CFS2:0 Clock Frequency Divide Select. These bits select the audio sample rate frequency. The audio sample rate depends on
which clock source is selected and the frequency of the clock source.

Divide XTAL1 XTAL2
CFS2:0 Factor 24.576 MHz 16.9344 MHz

0 3072 8.0 kHz 5.5125 kHz
1 1536 16.0 kHz 11.025 kHz
2 896 27.42857 kHz 18.9 kHz
3 768 32.0 kHz 22.05 kHz
4 448 Not Supported 37.8 kHz
5 384 Not Supported 44.1 kHz
6 512 48.0 kHz 33.075 kHz
7 2560 9.6 kHz 6.615 kHz

Note that the AD1847’s internal oscillators can be overdriven by external clock sources at the crystal inputs. This is the
configuration used by serial bus slave codecs in daisy-chained multiple codec systems. If an external clock source is ap-
plied, it will be divided down by the selected Divide Factor. The external clock need not be at the recommended crystal
frequencies.

S/M Stereo/Mono Select. This bit determines how the audio data streams are formatted. Selecting stereo will result with alter-
nating samples representing left and right audio channels. Mono playback plays the same audio sample on both channels.
Mono capture only captures data from the left audio channel.

0 Mono
1 Stereo

C/L Companded/Linear Select. This bit selects between a linear digital representation of the audio signal or a nonlinear, com-
panded format for all input and output data. The type of linear PCM or the type of companded format is defined by the
FMT bits.

0 Linear PCM
1 Companded

FMT Format Select. This bit defines the format for all digital audio input and output based on the state of the C/L bit.

Linear PCM (C/L = 0) Companded (C/L = 1)

0 8-bit unsigned linear PCM 8-bit µ-law companded
1 16-bit signed linear PCM 8-bit A-law companded

 res Reserved for future expansion. Write zeros (LO) to all reserved bits.

This register’s initial state after reset is: 0000 0000 (00h).

AD1847

REV. B–16–

Interface Configuration Register (Index Address 9)

IA3:0 Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

1001 res res res res ACAL res res PEN

PEN Playback Enable. This bit will enable the playback of data in the format selected. PEN may be set and reset without
setting the MCE bit.

0 Playback Disabled
1 Playback Enabled

ACAL Autocalibrate Enable. This bit determines whether the AD1847 performs an autocalibrate when exiting from the Mode
Change Enable (MCE) state. If the ACAL bit is not set, the previous autocalibration values are used when returning from
the Mode Change Enable (MCE) state and no autocalibration takes place. Autocalibration must be preformed after initial
power-up for proper operation. This bit is HI after reset.

0 No autocalibration
1 Autocalibration allowed
NOTE: The ACAL bit can only be changed when the AD1847 is in the Mode Change Enable (MCE) state.

res Reserved for future expansion. Write zeros (LO) to all reserved bits.

This register’s initial state after reset is: 0000 1000 (08h).

Pin Control Register (Index Address 10)

IA3:0 Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

1010 XCTL1 XCTL0 CLKTS res res res res res

CLKTS Clock Three-State. If the BM bit is HI, and the CLKTS bit is HI, then the CLKOUT pin will be three-stated. If the BM
bit is HI, and the bit CLKTS is LO, then the CLKOUT pin is not three-stated. If the BM bit is LO, then the CLKOUT
pin is always three-stated.

XCTL1:0 External Control. The state of these independent bits is reflected on the respective XCTL1 and XCTL0 pins of the
AD1847.

0 TTL logic LO on XCTL1, XCTL0 pins

1 TTL logic HI on XCTL1, XCTL0 pins

res Reserved for future expansion. Write zeros (LO) to all reserved bits.

This register’s initial state after reset is: 0000 0000 (00h).

Invalid Address (Index Address 11)

IA3:0 Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

1011 inval inval inval inval inval inval inval inval

inval Writes to this index address are ignored. Index readback of this index address will return the Status Word.

AD1847

REV. B –17–

Miscellaneous Information Register (Index Address 12)

IA3:0 Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

1100 FRS TSSEL res res res res res res

The Miscellaneous Information Register can only be changed when the AD1847 is in the Mode Change Enable (MCE) state. Changes to this
register are updated at the next Serial Data Frame Sync (SDFS) boundary. If FRS is LO (i.e., 32 slots per frame), and either TSSEL or FRS
change in the first sample of a frame, the change is not updated at the second sample of the same frame, but at the first sample of the next frame.

TSSEL Transmit Slot Select. This bit determines which TDM time slots the AD1847 should transmit on.
0 Transmit on time slots 3, 4 and 5. Used when SDI and SDO are tied together (i.e., “1-wire” system).
1 Transmit on slots 0, 1 and 2. Used when SDI and SDO are independent inputs and outputs

(i.e., “2-wire” system).

FRS Frame Size. This bit selects the number of time slots per frame.
0 Selects 32 slots per frame (two samples per frame sync or frame sync at half the sample rate).
1 Selects 16 slots per frame (one sample per frame sync or frame sync at the sample rate).

res Reserved for future expansion. Write zeros (LO) to all reserved bits.

This register’s initial state after reset is: 0000 0000 (00h).

Digital Mix Control Register (Index Address 13)

IA3:0 Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

1101 DMA5 DMA4 DMA3 DMA2 DMA1 DMA0 res DME

DME Digital Mix Enable. This bit enables the digital mix of the ADCs’ output with the DACs’ input. When enabled, the data
from the ADCs is digitally mixed with other data being delivered to the DACs (regardless of whether or not playback
[PEN] is enabled, i.e., set). If there is a capture overrun, then the last sample captured before overrun will be used for
the digital mix. If playback is enabled (PEN set) and there is a playback underrun, then a midscale zero will be added to
the digital mix data.

0 Digital mix disabled (muted)
1 Digital mix enabled

DMA5:0 Digital Mix Attenuation. These bits determine the attenuation of the ADC output data mixed with the DAC input data.
The least significant bit of this 64-level attenuate select represents –1.5 dB. Maximum attenuation is –94.5 dB.

res Reserved for future expansion. Write zeros (LO) to all reserved bits.

This register’s initial state after reset is: 0000 0000 (00h).

Invalid Address (Index Address 14)

IA3:0 Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

1110 inval inval inval inval inval inval inval inval

inval Writes to this index address are ignored. Index readback of this index address will return the Status Word.

Invalid Address (Index Address 15)

IA3:0 Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

1111 inval inval inval inval inval inval inval inval

inval Writes to this index address are ignored. Index readback of this index address will return the Status Word.

AD1847

REV. B–18–

Serial Data Interface
The AD1847 serial data interface uses a Time Division Multi-
plex (TDM) scheme that is compatible with DSP serial ports
configured in Multi-Channel Mode with either 32 or 16 16-bit
time slots. An AD1847 is always the serial bus master, transmit-
ting the serial clock (SCLK) and the serial data frame sync
(SDFS). The AD1847 always receives control and playback
data in time slots 0, 1 and 2. The AD1847 will transmit status
or index register readback and capture data in time slots 0, 1
and 2 if TSSEL = 1, and will transmit status or index register
readback and capture data in time slots 3, 4 and 5 if TSSEL =
0. The following table in Figure 7 shows an example of how the
time slots might be assigned.

In this example design, which uses the ADSP-21xx DSP, each
frame is divided into 32 time slots of 16-bits each (FRS = 0).
Two audio samples are contained in the 32 time slots, with a
single frame sync (SDFS) at the beginning of the frame. The
ADSP-21xx serial port (SPORT0) supports 32 time slots. The
format of the first 16 time slots (sample N) is the same as the
format of the second 16 time slots (sample N+1). In this ex-
ample, 24 time slots are used, as indicated below. Note that
time slots 12 through 15 and 28 through 31 are unused in this
example, and that Figure 7 presumes that TSSEL = 0 (“1-wire”
system).

Slot Number Source Destination Format

0, 16 AD1847 Control Word
1, 17 ASIC AD1847 Left Playback Data
2, 18 Right Playback Data
3, 19 AD1847 Status Word/

Index Readback
4, 20 AD1847 ASIC Left Capture Data
5, 21 Right Capture Data
0, 16 AD1847 Control Word
1, 17 DSP AD1847 Left Playback Data
2, 18 Right Playback Data
3, 19 AD1847 Status Word/

Index Readback
4, 20 AD1847 DSP Left Capture Data
5, 21 Right Capture Data
6, 22 DSP Control
7, 23 ASIC DSP Left Processed

Playback Data
8, 24 Right Processed

Playback Data
9, 25 DSP Status
10, 26 DSP ASIC Left Processed

Capture Data

11, 27 Right Processed
Capture Data

Figure 7. Time Slot Assignment Example

Note that in this “1-wire” system example, the Digital Signal
Processor (DSP) and ISA Bus Interface ASIC (ASIC) use the
same slots to communicate to the AD1847. This reduces the
number of total time slots required and eliminates the need for
the AD1847 to distinguish between DSP data and ASIC data.
Also, in this example the ASIC and the DSP do not send data to
the AD1847 at the same time, so separate slots are unnecessary.

The digital data in the serial interface is pipelined up to 2
samples deep. This pipelining is required to properly resolve the
interface between the relatively fast fixed SCLK rate, and the
relatively slow sample rates (and therefore frame sync rates) at
which the AD1847 is capable of running. At low sample rates,
two samples of data can be serviced in a fraction of a sample pe-
riod. For example, at an 8 kHz sample rate, 32 time slots only
consume 32 × 16 × (1/12.288 MHz) = 41.67 µs out of a 125 µs
period. The two-deep data pipeline thus allows sample overrun
(capture) and sample underrun (playback) to be avoided.

Figure 8 represents a logical view of the slot utilization between
devices.

AD1847
SDI

SDO

0, 1, 2, 16, 17, 18

ASIC

ADSP-21XX

DR

DT

DT

DR

NOTE: DSP MUST HAVE TWO SERIAL PORTS

6, 7, 8,
22, 23, 24

9, 10, 11,
25, 26, 27

3, 4, 5, 19, 20, 21

0, 1, 2,
16, 17, 18

3, 4, 5,
19, 20, 21

Figure 8. Time Slot Allocation Example

Note that this is a system specific 1-wire example. For non-DSP
operation, the DSP is either not present or disabled. If the DSP
is present, the ASIC configures the DSP through slot 6 (and slot
22) to three-state its outputs in time slots 0, 1 and 2 (and slots
16, 17 and 18). The ASIC can then enable its drivers for time
slots 0, 1 and 2 (and slots 16, 17 and 18). For DSP operation,
the ASIC three-states its outputs for time slots 0, 1 and 2 (and
slots 16, 17 and 18) and enables the DSP drivers for slots 0, 1
and 2 (and slots 16, 17, and 18).

An application note is available from Analog Devices with addi-
tional information on interfacing to the AD1847 serial port.
This application note can be obtained through your local Ana-
log Devices representative, or downloaded from the DSP Bulle-
tin Board Service at (617) 461-4258 (8 data bits, no parity, 1
stop bit, 300/1200/2400/4600 baud).

AD1847

REV. B –19–

Control Word

Data 15 Data 14 Data 13 Data 12 Data 11 Data 10 Data 9 Data 8

CLOR MCE RREQ res IA3 IA2 IA1 IA0

Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0

Left Playback Data

Data 15 Data 14 Data 13 Data 12 Data 11 Data 10 Data 9 Data 8

DATA15 DATA14 DATA13 DATA12 DATA11 DATA10 DATA9 DATA8

Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0

Right Playback Data

Data 15 Data 14 Data 13 Data 12 Data 11 Data 10 Data 9 Data 8

DATA15 DATA14 DATA13 DATA12 DATA11 DATA10 DATA9 DATA8

Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0

Status Word

Data 15 Data 14 Data 13 Data 12 Data 11 Data 10 Data 9 Data 8

res res RREQ res ID3 ID2 ID1 ID0

Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

res res ORR1 ORR0 ORL1 ORL0 ACI INIT

Index Readback

Data 15 Data 14 Data 13 Data 12 Data 11 Data 10 Data 9 Data 8

CLOR MCE RREQ res IA3 IA2 IA1 IA0

Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0

Left Capture Data

Data 15 Data 14 Data 13 Data 12 Data 11 Data 10 Data 9 Data 8

DATA15 DATA14 DATA13 DATA12 DATA11 DATA10 DATA9 DATA8

Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA 1 DATA0

Right Capture Data

Data 15 Data 14 Data 13 Data 12 Data 11 Data 10 Data 9 Data 8

DATA15 DATA14 DATA13 DATA12 DATA11 DATA10 DATA9 DATA8

Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0

AD1847

REV. B–20–

IA3:0 Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0 Index

0000 LSS1 LSS0 res res LIG3 LIG2 LIG1 LIG0 0

0001 RSS1 RSS0 res res RIG3 RIG2 RIG1 RIG0 1

0010 LMX1 res res LX1G4 LX1G3 LX1G2 LX1G1 LX1G0 2

0011 RMX1 res res RX1G4 RX1G3 RX1G2 RX1G1 RX1G0 3

0100 LMX2 res res LX2G4 LX2G3 LX2G2 LX2G1 LX2G0 4

0101 RMX2 res res RX2G4 RX2G3 RX2G2 RX2G1 RX2G0 5

0110 LDM res LDA5 LDA4 LDA3 LDA2 LDA1 LDA0 6

0111 RDM res RDA5 RDA4 RDA3 RDA2 RDA1 RDA0 7

1000 res FMT C/L S/M CFS2 CFS1 CFS0 CSL 8

1001 res res res res ACAL res res PEN 9

1010 XCTL1 XCTL0 CLKTS res res res res res 10

1011 inval inval inval inval inval inval inval inval 11

1100 FRS TSSEL res res res res res res 12

1101 DMA5 DMA4 DMA3 DMA2 DMA1 DMA0 res DME 13

1110 inval inval inval inval inval inval inval inval 14

1111 inval inval inval inval inval inval inval inval 15

Figure 9. Register Map Summary

Control Register Mapping Summary
A detailed map of the control register bit assignments is summa-
rized for reference in Figure 9.

Daisy-Chained Multiple Codecs
Multiple AD1847s can be configured in a daisy-chain system
with a single master Codec and one or more slave Codecs.
Codecs in a daisy-chained configuration are synchronized at the
sample level.

The master and slave AD1847s should be powered-up together.
If this is not possible, the slave(s) should power-up before the
master Codec, such that the slave(s) are ready when the master
starts to drive the serial interface, and a serial data frame sync
(SDFS) can synchronize the master and slave(s).

The sample rate for the master and slave(s) should be pro-
grammed together. If this is not possible, the slave(s) should be
programmed before the master AD1847. A slave AD1847 enters
a time-out period after a new sample rate has been selected.
During this time-out period, a slave will ignore any activity on
the SDFS signal (i.e., frame syncs). There is no software means
to determine when a slave has exited from this time-out period
and is ready to respond to frame syncs. However, as long as the
AD1847 master is driving the serial interface, a frame sync will
not occur before the slave Codec(s) are ready.

Note that the time slots for all slave AD1847s must be assigned
to those slots which immediately follow the time slots consumed
by the master AD1847 so that the TSO (Time Slot Output)/TSI
(Time Slot Input) signaling operates properly. For example, in a
2-wire system with one master and one slave, the time slot as-
signment should be 0, 1, 2 (16, 17, 18) for the master AD1847,
and 3, 4, 5 (19, 20, 21) for the slave AD1847.

Figure 10 illustrates the connection between master and slave(s)
in a daisy-chained, multiple Codec system. Note that the TSI
pin of the master Codec should be tied to digital ground. The
XTAL1I pin of the slaves should be connected to digital
ground, and XTAL1O pin should be left unconnected, while
the XTAL2I pin should be connected to the CLKOUT pin of
the AD1847 master, and the XTAL2O pin generates a driven
version of the CLKOUT signal applied to the XTAL2I pin.

INITIALIZATION AND PROCEDURES
 Reset and Power Down
A total reset of the AD1847 is defined as any event which
requires both the digital and analog section of the AD1847 to
return to a known and stable state. Total reset mode, as well as
power down, occurs when the PWRDOWN pin of the AD1847
has been asserted low for minimum power consumption. When
the PWRDOWN signal is deasserted, the AD1847 must be cali-
brated by setting the ACAL bit and exiting from the Mode
Change Enable (MCE) state.

The reset occurs, and only resets the digital section of the
AD1847, when the RESET pin of the AD1847 has been as-
serted LO to initialize all registers to known values. See the reg-
ister definitions for the exact values initialized. The register reset
defaults include TSSEL = 0 (1-wire system) and FRS = 0
(32 slots per frame). If the target application requires a 2-wire
system design or 16 slots per frame, the AD1847 can be
bootstrapped into these configurations.

AD1847

REV. B –21–

2

XTAL1I,O XTAL2I,O

TSO CLKOUT

AD1847
(MASTER)

2

SCLK
SDFS
SDI
SDO

16.9344
MHz

24.576
MHz

TSI

TSI XTAL2I

TSO XTAL1I

(SLAVE 1)

SCLK
SDFS
SDI
SDO

XTAL1O
XTAL2O N/C

TSI XTAL2I

TSO XTAL1I

(SLAVE 2)

SCLK
SDFS
SDI
SDO

XTAL1O
XTAL2O N/C

Figure 10a. One-Wire Daisy-Chained Codec Interconnect

2

XTAL1I, O XTAL2I, O

TSO CLKOUT

AD1847
(MASTER)

2

SCLK
SDFS
SDI
SDO

16.9344
MHz

24.576
MHz

TSI

TSI XTAL2I

TSO XTAL1I

(SLAVE 1)

SCLK
SDFS
SDI
SDO

XTAL1O
XTAL2O N/C

TSI XTAL2I

TSO XTAL1I

(SLAVE 2)

SCLK
SDFS
SDI
SDO

XTAL1O
XTAL2O N/C

Figure 10b. Two-Wire Daisy-Chained Codec Interconnect

To bootstrap into TSSEL = 1 (i.e., 2-wire system design), the
host CPU or DSP must transmit to the AD1847 in slot 0 a
Control Word with the MCE bit set HI, IA3:0 = “1100” to
address the Miscellaneous Information Index Register, and
DATA7:0 = “X100 000” to set the TSSEL bit HI. To bootstrap
into FRS = 1 (i.e., 16 slots per frame), the host CPU or DSP
must transmit to the AD1847 in slot 0 a Control Word with the

MCE bit set HI, IA3:0 = “1100” to address the Miscellaneous
Information Index Register, and DATA7:0 = “1X00 0000” to
set the FRS bit HI.

The host CPU or DSP must maintain the MCE bit set HI in
slot 16, which is the Control Word of the second sample of
the frame, so that the AD1847 does not initiate autocalibration
prematurely. At the next frame sync, the AD1847 will be
reconfigured.

The AD1847 must be reset after power up. When the RESET
signal is deasserted, the AD1847 will autocalibrate when the
MCE bit is reset LO (i.e., when exiting the Mode Change En-
able state) only if the ACAL bit is set. If the ACAL bit is not
set, the previous autocalibration values will be used.

The AD1847 will not function properly unless an auto-
calibration is performed after power up.

During power down, the serial port digital output pins and the
analog output pins take the following states:

SCLK–LO if BM is HI (i.e., bus master), input pin if BM is
LO (i.e., bus slave)

SDFS–LO if BM is HI, input pin if BM is LO
SDO–three-state
TSO–three-state
CLKOUT–LO if BM HI, three-state if BM is LO
VREF–pulled to analog ground
L_OUT, R_ OUT– pulled to analog ground

Clock Connections and Clock Rates
When the AD1847 is configured as a bus slave (BM = LO), the
XTAL1I pin should be connected to digital ground, and the
XTAL2I pin should be tied to the CLKOUT of the AD1847
bus master. The XTAL1O and the XTAL2O pins should be left
unconnected. When the AD1847 is configured as a bus master
(BM = HI), the XTAL1I and the XTAL1O pin should be con-
nected to a 24.576 MHz crystal, and the XTAL2I and
XTAL2O pin should be connected to a 16.9344 MHz crystal.

When XTAL1 is selected (by resetting the CSL bit LO in the
Data Format Register) as the clock source, the SCLK pin will
generated a serial clock at 12.288 MHz (or one half of the crys-
tal frequency applied at XTAL1), and the CLKOUT pin will
also generate a clock output at 12.288 MHz when the AD1847
is in bus master mode (BM = HI). When XTAL2 is selected (by
setting the CSL bit HI in the Data Format Register) as the clock
source, the SCLK pin will generate a serial clock at 11.2896 MHz
(or two thirds of the crystal frequency applied at XTAL2), and
the CLKOUT pin will generate a clock output at 16.9344 MHz
when the AD1847 is in bus master mode (BM = HI). The
CLKOUT pin will be three-stated when the AD1847 is placed
in bus slave mode (BM = LO).

When the selected frame size is 32 slots per frame (by resetting
the FRS bit LO in the Miscellaneous Information Register), the
SDFS pin will generate a serial data frame sync at the frequency
of the selected sample rate divided by two, when the AD1847 is
in bus master mode (BM = HI). When the selected frame size is
16 slots per frame (by setting the FRS bit HI in the Miscella-
neous Information Register), the SDFS pin will generate a serial
data frame sync at the frequency of the selected sample rate,
when the AD1847 is in bus master mode (BM = HI).

AD1847

REV. B–22–

When the AD1847 is in bus slave mode (BM = LO), the TSI
pin should be connected to the TSO pin of the AD1847 master
or slave which has been assigned to the preceding time slots.
The signal on the TSO pin is essentially the signal received on
the TSI pin, but delayed by 3 or 6 time slots from TSI (depend-
ing on the state of TSSEL). The frequency of the transitions on
the TSI and TSO lines is equivalent to the frequency on the
SDFS pin.

When the AD1847 is in bus master mode (BM = HI), the TSI
pin should be connected to digital ground. The signal on the
TSO pin is essentially the same as the signal output on the
SDFS pin, but delayed by 3 or 6 time slots from SDFS (again,
depending on the state of TSSEL).

Mode Change Enable State
The AD1847 must be in the Mode Change Enable (MCE) state
before any changes to the ACAL bit of the Interface Configura-
tion Register, the Data Format Register, or the Miscellaneous
Information Register are allowed. Note that the MCE bit does
not have to be reset LO in order for changes to take effect.

Digital Mix
Digital mix is enabled via the DME bit in the Digital Mix Con-
trol Register. The digital mix routes the digital data from the
ADCs to the DACs. The mix can be digitally attenuated via bits
also in the Digital Mix Control Register. The ADC data is
summed with the DAC data supplied at the digital bus inter-
face. When digital mix is enabled and the PEN bit is not set,
ADC data is summed with zeros to produce the DAC output.

If the sum of the digital mix (ADC output and DAC input from
the serial bus interface) is greater than full scale, the AD1847
will send a positive or negative full scale value to the DACs,
whichever is appropriate (clipping).

Autocalibration
The AD1847 has the ability to calibrate its ADCs and DACs for
greater accuracy by minimizing dc offsets. Autocalibration oc-
curs whenever the AD1847 exits from the Mode Change Enable
(MCE) state AND the ACAL bit in the Interface Configuration
Register has been set.

The completion of the autocalibration sequence can be deter-
mined by polling the Autocalibration In-Progress (ACI) bit in
the Status Word. This bit will be HI while the autocalibration is
in progress and LO once autocalibration has completed. The
autocalibration sequence will take at least 384 sample periods.

The autocalibration procedure is as follows:

1. Mute both left and right AUX1 and AUX2 inputs via the Left
Auxiliary Input and Right Auxiliary Input Control Registers.

2. Place the AD1847 in the Mode Change Enable (MCE) state
using the MCE bit of the AD1847 Control Word. Set the
ACAL bit in the Interface Configuration Register.

3. Exit from the Mode Change Enable state by resetting the
MCE bit.

4. Poll the ACI bit in the AD1847 Status Word for a HI
(autocalibration in progress), then poll the ACI bit for a LO
(autocalibration complete).

5. Unmute the AUX inputs, if used.

If ACAL is not set, the AD1847 is muted for 128 sample peri-
ods after resetting the MCE bit, and the ACI bit in the Status
Word is set HI during this 128 sample periods. Autocalibration
must be performed after power-up to ensure proper operation of
the AD1847.

Exiting from the MCE state always causes ACI to go HI. If the
ACAL bit is set when MCE state is exited, then the ACI bit will
be HI for 384 sample periods. If the ACAL bit is reset when
MCE is exited, then the ACI bit will be HI for 128 sample
periods.

Changing Sample Rates
The internal states of the AD1847 are synchronized by the
selected sample frequency defined in the Data Format Register.
The changing of either the clock source or the clock frequency
divide requires a special sequence for proper AD1847 operation.

1. Mute the outputs of the AD1847 and enter the Mode Change
Enable (MCE) state by setting the MCE bit of the AD1847
Control Word.

2. During a single atomic or nondivisible write cycle, change the
Clock Frequency Divide Select (CFS) and/or the Clock
Source Select (CSL) bits of the Data Format Register to the
desired values. CFS and CSL can be programmed in the
same Control Word as MCE.

3. The INIT bit in the Status Word will be set HI at the last
sample of the next frame to indicate that the serial port will be
disabled for a timeout period.

4. The AD1847 requires a period of time to resynchronize its
internal states to the newly selected clock. During this time,
the AD1847 will be unable to respond at its serial interface
port (i.e., no frame syncs will be generated). The time-out
period is 221 3 SCLK ≈ 170 ms after power-up, and ≈ 5 ms
for subsequent changes of sample rate.

5. Exit the Mode Change Enable state by resetting the MCE bit.
Upon exiting the MCE state, an autocalibration of duration
384 sample periods or an output mute of duration 128 sample
periods occurs, depending on the state of the ACAL bit.

6. Poll the ACI bit in the AD1847 Status Word for a HI (indi-
cating that autocalibration is in progress) then poll the ACI
bit for a LO (indicating that autocalibration has completed).
Once the ACI bit has been read back LO, normal operation of
the Codec can resume.

The CSL and CFS bits cannot be changed unless the AD1847
is in the Mode Change Enable state (i.e., the MCE bit in the
AD1847 Control Word is set). Attempts to change the contents
of the Data Format Register without MCE set will result in the
write cycle not being recognized (the bits will not be updated).

The MCE bit should not be reset until after the INIT bit in the
AD1847 Status Word is detected HI. After the INIT bit is de-
tected HI, the serial port is disabled. When the next frame sync
arrives (after the time-out period), all internal clocks are stable
and the serial port is ready for normal operation.

AD1847

REV. B –23–

DATA FORMAT DEFINITIONS
There are four data formats supported by the AD1847: 16-bit
signed, 8-bit unsigned, 8-bit companded µ-law, and 8-bit com-
panded A-law. The AD1847 supports these four formats because
each of them have found wide use in important applications.

16-Bit Signed Format
The 16-bit signed format (also called 16-bit twos-complement)
is the standard method of representing 16-bit digital audio. This
format yields 96 dB of dynamic range and is common in con-
sumer compact disk audio players. This format uses the value
– 32768 (8000h) to represent minimum analog amplitude while
32767 (7FFFh) represents maximum analog amplitude. Inter-
mediate values are a linear interpolation between minimum and
maximum amplitude values.

MAX

MIN
8000h

DIGITAL VALUE

A
N

A
L

O
G

 V
A

L
U

E

0000h 7FFFh

Figure 11. 16-Bit Signed Format

8-Bit Unsigned Format
The 8-bit unsigned format is commonly used in the personal
computer industry. This format delivers 48 dB of dynamic
range. The value 0 (00h) is used to represent minimum analog
amplitude while 255 (FFh) is used to represent maximum ana-
log amplitude. Intermediate values are a linear interpolation be-
tween minimum and maximum amplitude values. The least
significant byte of the 16-bit internal data is truncated to create
the 8-bit output samples.

MAX

MIN
00h

DIGITAL VALUE

A
N

A
L

O
G

 V
A

L
U

E

7Fh FFh

Figure 12. 8-Bit Unsigned Format

8-Bit Companded Formats
The 8-bit companded formats (µ-law and A-law) are used in the
telecommunications industry. Both of these formats are used in
ISDN communications and workstations; µ-law is the standard
for the United States and Japan while A-law is used in Europe.
Companded audio allows either 64 dB or 72 dB of dynamic
range using only 8-bits per sample. This is accomplished using a
nonlinear formula which assigns more digital codes to lower am-
plitude analog signals at the expense of resolution of higher am-
plitude signals. The µ-law format of the AD1847 conforms to
the Bell System µ = 255 companding law while the A-law format
conforms to CCITT “A” law models. Figure 13 shows approxi-
mately how both the µ-law and A-law companding schemes be-
have. Refer to the standards mentioned above for an exact
definition.

MAX

MIN
00h FFh 80h

AAh

µ-law

A-lawD5h2Ah

DIGITAL VALUE

A
N

A
L

O
G

 V
A

L
U

E

Figure 13. 8-Bit Companded Format

APPLICATIONS CIRCUITS
The AD1847 Stereo Codec has been designed to require a mini-
mum of external circuitry. The recommended circuits are shown
in Figures 14 through 22. Analog Devices estimates that the to-
tal cost of all the components shown in these Figures, including
crystals, to be less than $3 in 10,000 quantities.

Industry-standard compact disc “line-levels” are 2 Vrms centered
around analog ground. (For other audio equipment, “line level”
is much more loosely defined.) The AD1847 SoundPort is a
+5 V only powered device. Line level voltage swings for the
AD1847 are defined to be 1 Vrms for a sine wave ADC input and
0.707 Vrms for a sine wave DAC output. Thus, 2 Vrms input ana-
log signals must be attenuated and either centered around the
reference voltage intermediate between 0 V and +5 V or
ac-coupled. The VREF pin will be at this intermediate voltage,
nominally 2.25 V. It has limited drive but can be used as a volt-
age datum to an op amp input. Note, however, that dc-coupled
inputs are not recommended, as they provide no performance
benefits with the AD1847 architecture. Furthermore, dc offset
differences between multiple dc-coupled inputs create the po-
tential for “clicks” when changing the input mux selection.

AD1847

REV. B–24–

Circuits for 2 Vrms line-level inputs and auxiliaries are shown in
Figure 14 and Figure 15. Note that these are divide-by-two
resistive dividers. The input resistor and 560 pF (1000 pF)
capacitor provide the single-pole of antialias filtering required
for the ADCs. If line-level inputs are already at the 1 Vrms levels
expected by the AD1847, the resistors in parallel with the
560 pF (1000 pF) capacitors can be omitted. If the application
does not route the AUX2 inputs to the ADCs, then no antialias
filtering is required (only the 1 µF ac coupling capacitor).

5.1k

560pF
NPO

5.1k

0.33 µF
R_LINE1
R_LINE2

5.1k

560pF
NPO

5.1k

0.33 µF
L_LINE1
L_LINE2

Figure 14. 2 Vrms Line-Level Input Circuit for Line Inputs

3.3k

1000pF
NPO

4.3k

L_AUX1
L_AUX2

1µF

R_AUX1
R_AUX2

3.3k

1000pF
NPO

4.3k

1µF

Figure 15. 2 Vrms Line-Level Input Circuit for AUX Inputs

Figure 16 illustrates one example of how an electret condenser
microphone requiring phantom power could be connected to
the AD1847. VREF is shown buffered by an op amp; a transistor
like a 2N4124 will also work well for this purpose. Note that if a
battery-powered microphone is used, the buffer and R2s are not
needed. The values of R1, R2, and C should be chosen in light
of the mic characteristics and intended gain. Typical values for
these might be R1 = 20 kΩ, R2 = 2 kΩ, and C = 220 pF.

1/2 SSM2135
OR AD820

R2

R2

LEFT
ELECTRET

CONDENSER
MICROPHONE

INPUT

5k 0.33µF
L_LINE1
L_LINE2

1µF

R1

C

1/2 SSM2135
OR AD820

VREF

5k 0.33µF
R_LINE1
R_LINE2

1µF
R1

C

1/2 SSM2135
OR AD820

VREF

RIGHT
ELECTRET

CONDENSER
MICROPHONE

INPUT

Figure 16. “Phantom-Powered” Microphone Input Circuit

Figure 17 shows ac-coupled line outputs. The resistors are
used to center the output signals around analog ground. If
dc-coupling is desired, VREF could be used with op amps as
mentioned previously.

47k

1µF
L_OUT

47k

1µF
R_OUT

Figure 17. Line Output Connections

A circuit for headphone drive is illustrated in Figure 18. Drive is
supplied by +5 V operational amps. The circuit shown ac
couples the headphones to the line output.

SSM2135

20k 470µF

18k

VREF

HEADPHONE
LEFT

20k
470µF

18k

HEADPHONE
RIGHT

L_OUT

R_OUT

Figure 18. Headphone Drive Connections

Figure 19 illustrates reference bypassing. VREFI should only be
connected to its bypass capacitors.

10µF 0.1µF

VREFI

10µF

VREF

Figure 19. Voltage Reference Bypassing

Figure 20 illustrates signal-path filtering capacitors, L_FILT
and R_FILT. The AD1847 must use 1.0 µF capacitors. The
1.0 µF capacitors required by the AD1847 can be of any type.

1.0µF

LFILT

1.0µF

RFILT

Figure 20. External Filter Capacitor Connections

AD1847

REV. B –25–

The crystals shown in the crystal connection circuitry of Figure
21 should be fundamental-mode and parallel-tuned. Two
sources for the exact crystals specified are Component Market-
ing Services in Massachusetts, U.S. at 617/762-4339 and
Cardinal Components in New Jersey, U.S. at 201/746-0333.
Note that using the exact data sheet frequencies is not required
and that external clock sources can be used to overdrive the
AD1847s internal oscillators. (See the description of the CFS2:0
control bits above.) If using an external clock source, apply it to
the crystal input pins while leaving the crystal output pins un-
connected. Attention should be paid to providing low-jitter ex-
ternal input clocks .

XTAL1I XTAL1O

20 64pF 20 64pF
24.576MHz

XTAL2I XTAL2O

20 64pF 20 64pF
16.9344MHz

Figure 21. Crystal Connections

Analog Devices also recommends a pull-down resistor on the
PWRDOWN signal.

Good, standard engineering practices should be applied for
power-supply decoupling. Decoupling capacitors should be
placed as close as possible to package pins. If a separate analog
power supply is not available, the circuit shown in Figure 22 is
recommended when using a single +5 V supply. Ferrite beads
suffice for the inductors shown. This circuitry should be as close
to the supply pins as is practical.

+5V SUPPLY

0.1µF

FERRITE

1µF
0.1µF

VDD VDD VDD

0.1µF

VDD

0.1µF

FERRITE

1µF

1.6

0.1µF1µF

VCC VCC

0.1µF 0.1µF

Figure 22. Recommended Power Supply Bypassing

Analog Devices recommends a split ground plane as shown in
Figure 23. The analog plane and the digital plane are connected
directly under the AD1847. Splitting the ground plane directly
under the SoundPort Codec is optimal because analog pins will
be located directly above the analog ground plane and digital
pins will be located directly above the digital ground plane for
the best isolation. The digital and analog grounds should be tied
together in the vicinity of the AD1847. Other schemes may also
yield satisfactory results. If the split ground plane recommended
here is not possible, the AD1847 should be entirely over the
analog ground plane with the ASIC and DSP over the digital
plane.

DIGITAL
GROUND
PLANE

ANALOG
GROUND

PLANE

PWRDOWN VCC

BM L_AUX2

AD1847

Figure 23. Recommended Ground Plane

AD1847

REV. B–26–

FREQUENCY RESPONSE PLOTS

10

–120
1.0

–90

–110

0.1

–100

0.0

–60

–80

–70

–50

–30

–20

0

–10

–40

0.8 0.90.70.60.50.40.30.2

dB

SAMPLE FREQUENCY – FS

Figure 24. AD1847 Analog-to-Digital Frequency Response
(Full-Scale Line-Level Inputs, 0 dB Gain)

dB

SAMPLE FREQUENCY – FS

10

–120
0.70

–90

–110

–100

0.40

–60

–80

–70

–50

–30

–20

0

–10

–40

0.64 0.680.600.560.520.480.44

Figure 25. AD1847 Analog-to-Digital Frequency Response
–Transition Band (Full-Scale Line-Level Inputs, 0 dB Gain)

10

–120

–90

–110

–100

–60

–80

–70

–50

–30

–20

0

–10

–40

1.00.10.0 0.8 0.90.70.60.50.40.30.2

dB

SAMPLE FREQUENCY – FS

Figure 26. AD1847 Digital-to-Analog Frequency Response
(Full-Scale Inputs, 0 dB Attenuation)

dB

SAMPLE FREQUENCY – FS

10

–120

–90

–110

–100

–60

–80

–70

–50

–30

–20

0

–10

–40

0.700.40 0.64 0.680.600.560.520.480.44

Figure 27. AD1847 Digital-to-Analog Frequency Response
–Transition Band (Full-Scale Inputs, 0 dB Attenuation)

AD1847

REV. B –27–

tHZtDV

tPD1

tS

tH

SCLK

SDFS

SDI

SDO

BIT 15

 BIT 14

 BIT 0

BIT 15

 BIT 14

 BIT 0

Figure 28. Time Slot Timing Diagram

SCLK

SDFS

SDI or
SDO

TSO

15 3 2 1 0 15 14 13

tPD1

LAST VALID TIME SLOT

tPD2

14 13

Figure 29. TSO Timing Diagram

tRPWL
RESET

PWRDOWN

Figure 30. Reset and Power Down Timing Diagram

16-BIT
STEREO

8-BIT
STEREO

SCLK

SDFS

16-BIT
MONO

8-BIT
MONO

CONTROL LEFT
PB

SDI/

SDO

TIME
SLOT 0

TIME
SLOT 1

TIME
SLOT 2

CONTROL

STATUS

RIGHT
PLAYBACK

RIGHT
PLAYBACK

LEFT
PLAYBACK

LEFT
CAPTURE

CONTROL

STATUS LEFT
CAPTURE

LEFT
PLAYBACK

LEFT
CAPTURE

SDI/

SDO

SDI/

SDO 0LEFT
CAPSTATUS

RIGHT
PB

RIGHT
CAP 0

CONTROL LEFT
PBSDI/

SDO 0LEFT
CAPSTATUS LEFT

CAP 0

Figure 31. Serial Data Format, 2-Wire System (TSSEL = 1)

16-BIT
STEREO

8-BIT
STEREO

SCLK

SDFS

TIME
SLOT 0

TIME
SLOT 1

TIME
SLOT 2

TIME
SLOT 3

TIME
SLOT 4

TIME
SLOT 5

16-BIT
MONO

8-BIT
MONO

CONTROL LEFT RIGHT STATUS LEFT RIGHT

CONTROL LEFT STATUS LEFT

PLAYBACK CAPTURE

CONTROL LEFT STATUS LEFT

CONTROL LEFT RIGHT STATUS LEFT RIGHT0 0

0 LEFT0

LEFT

SDI/
SDO

SDI/
SDO

SDI/
SDO

SDI/
SDO

Figure 32. Serial Data Format, 1-Wire System (TSSEL = 0)

AD1847

REV. B–28–

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).

44-Lead PLCC
(P-44A)

0.032 (0.81)
0.026 (0.66)

0.021 (0.53)
0.013 (0.33)

0.056 (1.42)
0.042 (1.07) 0.025 (0.63)

0.015 (0.38)

0.180 (4.57)
0.165 (4.19)

0.63 (16.00)
0.59 (14.99)

0.110 (2.79)

0.085 (2.16)

0.040 (1.01)
0.025 (0.64)

0.050
(1.27)
BSC

0.656 (16.66)
0.650 (16.51)

SQ

0.695 (17.65)
0.685 (17.40)

SQ

0.048 (1.21)
0.042 (1.07)

0.048 (1.21)

0.042 (1.07)

40 6

TOP VIEW

39

29

18

17

PIN 1
IDENTIFIER

7

28

0.020
(0.50)

R

44-Terminal Plastic Thin Quad Flatpack (TQFP)
(ST-44)

TOP VIEW
(PINS DOWN)

1

33

34

44

11

12

23

22

0.018 (0.45)
0.012 (0.30)

0.031 (0.80)
BSC

0.394
(10.0)

SQ

 0.472 (12.00) SQ

0.057 (1.45)
0.053 (1.35)

0.006 (0.15)
0.002 (0.05)

SEATING
PLANE

0.063 (1.60)
MAX

0.030 (0.75)
0.018 (0.45)

C
18

71
b

–2
–8

/9
6

P
R

IN
T

E
D

 IN
 U

.S
.A

.

INDEX PAGE
PRODUCT OVERVIEW . 1
AD1847 SPECIFICATIONS . 2
ORDERING GUIDE . 5
PINOUTS . 5
PIN DESCRIPTIONS . 6
AUDIO FUNCTIONAL DESCRIPTION 7

Analog Inputs . 7
Analog Mixing . 7
Analog-to-Digital Datapath . 7
Digital-to-Analog Datapath . 7
Digital Mixing . 8
Analog Outputs . 8
Digital Data Types . 8
Power Supplies and Voltage Reference 8
Clocks and Sample Rates . 8

CONTROL REGISTERS . 9
Control Register Mapping . 9
Control Word . 10
Left/Right Playback/Capture Data 10
Status Word . : 11
Index Readback . 12
Indirect Mapped Registers . 12
Left Input Control Register . 13
Right Input Control Register 13
Left Auxiliary #1 Input Control Register 13
Right Auxiliary #1 Input Control Register 13
Left Auxiliary #2 Input Control Register 14
Right Auxiliary #2 Input Control Register 14
Left DAC Control Register . 14
Right DAC Control Register . 14
Data Format Register . 15
Interface Configuration Register 16
Pin Control Register . 16
Invalid Address . 16
Miscellaneous Information Register 17
Digital Mix Control Register 17
Invalid Address . 17
Serial Data Interface . 18
Control Register Mapping Summary 20
Daisy-Chained Multiple Codecs 20

INITIALIZATION AND PROCEDURES 21
Reset and Power Down . 21
Clock Connections and Clock Rates 21
Mode Change Enable State . 22
Digital Mix . 22
Autocalibration . 22
Changing Sample Rates . 22

DATA FORMAT DEFINITIONS 23
16-Bit Signed Format . 23
8-Bit Unsigned Format . 23
8-Bit Companded Formats . 23

APPLICATIONS CIRCUITS . 23
FREQUENCY RESPONSE PLOTS 26
TIMING DIAGRAMS . 27
OUTLINE DIMENSIONS . 28

All brand or product names mentioned are trademarks or regis-
tered trademarks of their respective holders.

	16-Bit DSPs Front Page
	Development Tools
	16-Bit Table of Contents
	Contents
	Introduction
	Upgrade Information
	Getting Started
	Installation Procedures
	DSP System Development
	EZ-Kit Lite Host Program
	EZ-Kit Lite Monitor Program
	EZ-Kit Lite Hardware Description
	Programmer's Quick Reference

	Chap_1.pdf
	Contents
	Introduction
	Unpacking
	EZ-Kit Lite
	Contents of This Manual

	Chap_2.pdf
	Contents
	Overview
	Upgrade Description

	Chap_3.pdf
	Contents
	Overview
	Quick Start Software Installation
	Requirements
	Quick Start Hardware Installation

	Chap_4.pdf
	Contents
	Software Installation
	Software Installation Procedure
	Step 1: Make Working Copies Of The Diskettes
	Step 2: Modify Your CONFIG.SYS File
	Step 3: Install The Software On Your Hard Disk

	Environment Variables
	Hardware Installation

	Chap_5.pdf
	Contents
	Overview
	System Requirements
	System Design
	Architecture Description File
	Code Development
	Running The Assembler
	Running The Linker
	Running The Simulator
	Programming An EPROM
	Running The ADSP-2181 EZ-Kit Lite Board
	Debugging

	Chap_6.pdf
	Contents
	Program Overview
	Command Summary
	Detailed Commands
	File Menu
	View Menu
	Toolbar
	Status Bar

	Demo Menu
	DTMF
	Filtering
	Echo Cancellation
	ADPCM
	7.8k LPC
	2.4k LPC

	Floating Menu
	Loading Menu
	Download User Program and Go
	Download User Program
	Go
	Upload Data Memory
	Upload Program Memory
	Download Data Memory
	Download Program Memory

	Options Menu
	Settings
	List Of Demos

	Help Menu
	About EZ-Kit

	User Configurable Settings
	Error Messages & Troubleshooting

	Running Demos
	Creating Your Own Programs

	Chap_7.pdf
	Contents
	Program Overview
	Monitor Features
	Restrictions
	Creating Your Own Programs To Be Used With The Monitor
	Debugging
	DSP Memories

	Chap_7.pdf
	Contents
	Program Overview
	Monitor Features
	Restrictions
	Creating Your Own Programs To Be Used With The Monitor
	Debugging
	DSP Memories

	Chap_8.pdf
	Contents
	Design Overview
	Specifications
	Connectors
	Switches
	Indicators
	Hardware Operation
	Hardware Expansion, Configuring The Board For Different EPROMs
	Expansion Connectors
	Hardware Debugging

	quickref.pdf
	Contents
	Development Software Invocation Commands
	Assembler
	Linker
	PROM Splitter
	Assembler Directive
	Assembler C Preprocessor Directives

	Register Usage
	Addressing Tips
	Instruction Set Summary
	ALU Instructions
	MAC Instructions
	Shifter Instructions
	Data Move Instructions
	Multifunction Instructions
	Program Flow Instructions
	Miscellaneous Instructions

	Control/Status Registers
	Memory Maps
	Interrupt Vector Tables
	Labels for Control/Status Registers
	Registers & Architecture

