

DB-VA Designer’s Guide

0-3

DB Visual ARCHITECT 4.0 Designer's Guide

The software and documentation are furnished under the DB Visual ARCHITECT license agreement and may be used only in
accordance with the terms of the agreement.

Copyright Information
Copyright © 1999-2007 by Visual Paradigm. All rights reserved.

The material made available by Visual Paradigm in this document is protected under the laws and various international laws
and treaties. No portion of this document or the material contained on it may be reproduced in any form or by any means
without prior written permission from Visual Paradigm.

Every effort has been made to ensure the accuracy of this document. However, Visual Paradigm makes no warranties with
respect to this documentation and disclaims any implied warranties of merchantability and fitness for a particular purpose. The
information in this document is subject to change without notice.

All examples with names, company names, or companies that appear in this document are imaginary and do not refer to, or
portray, in name or substance, any actual names, companies, entities, or institutions. Any resemblance to any real person,
company, entity, or institution is purely coincidental.

Trademark Information

DB Visual ARCHITECT is registered trademark of Visual Paradigm.
Sun, Sun ONE, Java, Java2, J2EE and EJB, NetBeans are all registered trademarks of Sun Microsystems, Inc.
Eclipse is registered trademark of Eclipse.
JBuilder is registered trademark of Borland Corporation.
IntelliJ and IntelliJ IDEA are registered trademarks of JetBrains.
Microsoft, Windows, Windows NT, Visio, and the Windows logo are trademarks or registered trademarks of Microsoft
Corporation.
Oracle is a registered trademark, and JDeveloper is a trademark or registered trademark of Oracle Corporation.
BEA is registered trademarks of BEA Systems, Inc.
BEA WebLogic Workshop is trademark of BEA Systems, Inc.
Rational Rose is registered trademark of International Business Machines Corporation.
WinZip is a registered trademark of WinZip Computing, Inc.
Other trademarks or service marks referenced herein are property of their respective owners.

DB Visual ARCHITECT License Agreement

THE USE OF THE SOFTWARE LICENSED TO YOU IS SUBJECT TO THE TERMS AND CONDITIONS OF THIS
SOFTWARE LICENSE AGREEMENT. BY INSTALLING, COPYING, OR OTHERWISE USING THE SOFTWARE, YOU
ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT, AND AGREE TO BE BOUNDED
BY ALL OF THE TERMS AND CONDITIONS OF THIS SOFTWARE LICENSE AGREEMENT.

1. Limited License Grant. Visual Paradigm grants to you ("the Licensee") a personal, non-exclusive, non-transferable,
limited, perpetual, revocable license to install and use Visual Paradigm Products ("the Software" or "the Product").
The Licensee must not re-distribute the Software in whole or in part, either separately or included with a product.

2. Restrictions. The Software is confidential copyrighted information of Visual Paradigm, and Visual Paradigm and/or
its licensors retain title to all copies. The Licensee shall not modify, adapt, decompile, disassemble, decrypt, extract,
or otherwise reverse engineer the Software. Software may not be leased, rented, transferred, distributed, assigned, or
sublicensed, in whole or in part. The Software contains valuable trade secrets. The Licensee promises not to extract
any information or concepts from it as part of an effort to compete with the licensor, nor to assist anyone else in such
an effort. The Licensee agrees not to remove, modify, delete or destroy any proprietary right notices of Visual
Paradigm and its licensors, including copyright notices, in the Software.

3. Disclaimer of Warranty. The software and documentation are provided "AS IS," WITH NO WARRANTIES
WHATSOEVER. ALL EXPRESS OR IMPLIED REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR
NON-INFRINGEMENT, ARE HEREBY EXCLUDED. THE ENTIRE RISK AS TO SATISFACTORY QUALITY,
PERFORMANCE, ACCURACY AND EFFORT IS WITH THE LICENSEE. THERE IS NO WARRANTY THE
DOCUMENTATION, Visual Paradigm's EFFORTS OR THE LICENSED SOFTWARE WILL FULFILL ANY OF
LICENSEE'S PARTICULAR PURPOSES OR NEEDS. IF THESE WARRANTIES ARE UNENFORCEABLE
UNDER APPLICABLE LAW, THEN Visual Paradigm DISCLAIMS SUCH WARRANTIES TO THE MAXIMUM
EXTENT PERMITTED BY SUCH APPLICABLE LAW.

4. Limitation of Liability. Visual Paradigm AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY
DAMAGES SUFFERED BY THE LICENSEE OR ANY THIRD PARTY AS A RESULT OF USING OR
DISTRIBUTING SOFTWARE. IN NO EVENT WILL Visual Paradigm OR ITS LICENSORS BE LIABLE FOR
ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, EXEMPLARY, SPECIAL,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE,
EVEN IF Visual Paradigm HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DB-VA Designer’s Guide

0-4

5. Termination. The Licensee may terminate this License at any time by destroying all copies of Software. Visual
Paradigm will not be obligated to refund any License Fees, if any, paid by the Licensee for such termination. This
License will terminate immediately without notice from Visual Paradigm if the Licensee fails to comply with any
provision of this License. Upon such termination, the Licensee must destroy all copies of the Software. Visual
Paradigm reserves all rights to terminate this License.

SPECIFIC DISCLAIMER FOR HIGH-RISK ACTIVITIES. The SOFTWARE is not designed or intended for use in high-
risk activities including, without restricting the generality of the foregoing, on-line control of aircraft, air traffic, aircraft
navigation or aircraft communications; or in the design, construction, operation or maintenance of any nuclear facility. Visual
Paradigm disclaims any express or implied warranty of fitness for such purposes or any other purposes.

NOTICE. The Product is not intended for personal, family or household use; rather, it is intended exclusively for professional
use. Its utilization requires skills that differ from those needed to use consumer software products such as word processing or
spreadsheet software.

GOVERNMENT RIGHTS. If the Software is licensed by or on behalf of a unit or agency of any government, the Licensee
agrees that the Software is "commercial computer software", "commercial computer software documentation" or similar terms
and that, in the absence of a written agreement to the contrary, the Licensee's rights with respect to the Software are limited by
the terms of this Agreement.

Acknowledgements

This Product includes software developed by the Apache Software Foundation (http://www.apache.org). Copyright © 1999
The Apache Software Foundation. All rights reserved.

DB-VA Designer’s Guide

0-5

Table of Contents

Chapter 1 - Working with DB Visual ARCHITECT
Introduction .. 1 -2
Key Benefits ... 1 -3
Database Configuration.. 1 -5

Database Configuration for Java Project .. 1 -6
Database Configuration for .Net Project... 1 -9

Supported Database, JDBC Drivers and .NET Drivers .. 1 -14
Supporting Multiple Database.. 1 -15

Assigning Data Types from Multiple Database .. 1 -15
Displaying Data Type based on Default Database.. 1 -16

Chapter 2 - Using Wizard
Introduction .. 2 -2
Generating Code from Database .. 2 -3
Generating Code and Database from ERD... 2 -14
Generating Code and Database from Class Diagram ... 2 -24

Chapter 3 - Designing Object Model with UML Class Diagram
Introduction .. 3 -2
Creating Object Model with Class Diagram... 3 -2

Drawing a Class Diagram... 3 -3
Synchronizing from Data Model to Object Model ... 3 -13

Defining Package for Classes... 3 -14
Specifying Stereotypes ... 3 -16
Specifying Inheritance Strategy ... 3 -17
Specifying Collection Type.. 3 -19
Defining ORM Qualifier .. 3 -20
Customizing SQL... 3 -22

Chapter 4 - Designing Data Model by Entity Relationship Diagram
Introduction .. 4 -2
Creating Data Model by Entity Relationship Diagram... 4 -2

Drawing an Entity Relationship Diagram... 4 -2
Synchronizing from Object Model to Data Model ... 4 -7

Specifying Primary Key ... 4 -9
Specifying Index Column... 4 -10
Using the ID Generator .. 4 -11
Defining Discriminator... 4 -11

Defining Discriminator Column for Entity ... 4 -12
Defining Discriminator Value for Class ... 4 -13

Creating an Array Table ... 4 -14
Defining an Array Table ... 4 -14
Defining an Array Type for Attribute in Class ... 4 -15

Creating a Partial Table.. 4 -16
Splitting Table .. 4 -16
Converting to a Partial Table .. 4 -17

Copying SQL Statements from Tables... 4 -18
Copying SQL Statements from Specified Scope .. 4 -20

Chapter 5 - Reverse Engineering Classes and Databases
Introduction .. 5 -2
Reverse Engineering Classes.. 5 -2

Reverse Engineering Java Classes to Object Model ... 5 -2
Reverse Engineering Hibernate Model to Object Model.. 5 -5
Using ORM Pane.. 5 -8

Reverse Engineering Relational Database.. 5 -10
Using Reverse Database Facility ..5 -10
Using ORM Pane.. 5 -12

DB-VA Designer’s Guide

0-6

Chapter 6 - Mapping Object Model to Data Model and vice versa
Introduction ..6 -2
Mapping Object Model to Data Model...6 -2

Mapping Classes to Entities..6 -2
Mapping Attributes to Columns..6 -2
Mapping Data Type ..6 -3
Mapping Primary Key...6 -4
Mapping Association ..6 -4
Mapping Aggregation ...6 -4
Mapping Composite Aggregation...6 -5
Mapping Multiplicity ..6 -5
Mapping Many-to-Many Association ...6 -7
Mapping Inheritance/Generalization...6 -7
Mapping Collection of Objects to Array Table...6 -9
Mapping Object Model Terminology ...6 -9

Mapping Data Model to Object Model...6 -10
Mapping Entities to Classes..6 -10
Mapping Columns to Attributes..6 -10
Mapping Data Type ..6 -11
Mapping Primary Key...6 -12
Mapping Relationship ...6 -12
Mapping Cardinality ...6 -13
Mapping Many-to-Many Relationship..6 -13
Mapping Array Table to Collection of Objects...6 -14
Mapping Data Model Terminology ..6 -14

Showing Mapping by ORM Diagram...6 -14
Creating an ORM Diagram from Existing Diagrams..6 -14
Drawing an ORM Diagram...6 -17
Showing Attribute Mapping..6 -21
Supporting Real-time Synchronization ...6 -22
Switching the View of Mapping ...6 -25

Working with DB Visual
ARCHITECT 1

DB-VA Designer’s Guide Chapter 1 – Working with DB Visual ARCHITECT

1-2

Chapter 1 - Working with DB Visual ARCHITECT

DB Visual ARCHITECT (DB-VA) is an Object-Relational Mapping tool which supports building database application faster,
better and cheaper. This chapter gives you an introduction to DB-VA, describes the key benefits of DB-VA and shows you
how to connect your database and download the database driver files automatically to facilitate the working environment. The
supported database drivers for connecting database to the DB-VA working environment are also described.

In this chapter:

• Introduction
• Key Benefits
• Database Configuration
• Automatic Downloading Driver Files
• Supported Database
• Supported JDBC Drivers
• Supported .NET Drivers

Introduction

Software applications are most likely to be developed with a database such that all data working with the application system
can be retained, resulting in information and knowledge. Hence, database application is widely adopted by businesses of all
sizes. In order to access and manipulate the relational database, a standard computer language, Structured Query Language
(SQL) has to be used. SQL statements play an important role when developing database application.

Taking a trading system as an example, if the end-user wants to update a Sales Order record, the system has to retrieve the
corresponding record from the Sales Order table and display to the end-user. After the end-user confirms the modification of
data, the system has to update the record accordingly. It is noticeable that a database application requires a lot of coding for
handling SQL statements so as to access and manipulate the database.

Hence, it is inevitable that developers spend almost 50% of development time for implementing the code with SQL statement.
Moreover, mapping between the persistent code and database table is maintained throughout the development life cycle. Once
there is a change in the structure of a database table, SQL statements which related to the modified table have to be re-written.
Developers have to keep an eye on every change in the database schema.

DB Visual ARCHITECT (DB-VA) provides a solution to develop database application. DB-VA is an Object-Relational
Mapping tool which provides an ease-to-use environment bridging between object model, data model and relational database.
DB-VA not only provides you a visual modeling for both logical data design and physical data design, but also automates the
mapping between object model and data model.

DB-VA generates not only Java and .NET persistent code, but also a cost-effective, reliable, scalable and high-performance
object to relational mapping layer. The generated mapping layer includes the support of transaction, cache and other optimized
feature. DB-VA increases the productivity and significantly reduces the risk of developing the mapping layer manually.

Figure 1.1 - Introduction of Database Visual Architect

DB-VA Designer’s Guide Chapter 1 – Working with DB Visual ARCHITECT

1-3

The overview of DB-VA

Overview Diagram

Figure 1.2 - The overview diagram of DB-VA

Key Benefits

DB-VA provides the following key features so as to help you simplify your development:

• Persistence Made Easy

Traditionally developers spend a lot of effort in saving and loading objects between memory and database which
makes the program complicated and difficult to maintain. DB-VA simplifies these tasks by generating a persistence
layer between object and data models.

Figure 1.3 - Generate a Persistence Layer for communicate with database

DB-VA Designer’s Guide Chapter 1 – Working with DB Visual ARCHITECT

1-4

• Sophisticated Object-Relational Mapping Generator

DB-VA generates object-relational mapping layer which incorporates prime features such as transaction support,
pluggable cache layer, connection pool and customizable SQL statement. With this mapping layer, developers can
keep away from mundane implementation work and focus on the business requirements.

• Model Driven Development

DB-VA provides a true model driven platform for application development. DB-VA allows developer not only to start
from creating the models by using class diagram or entity relationship diagram to generating the executable
persistence layer from the models, but also to modify the entity-relational model which comes from reverse
engineering an existing database, transform into object model and generate persistence layer. With the sophisticated
model-code generator, the persistent model will be updated automatically according to any modification.

• Extensive Database Coverage

DB-VA supports a wide range of database, including Oracle, DB2, Cloudscape/Derby, Sybase Adaptive Server
Enterprise, Sybase SQL Anywhere, Microsoft SQL Server, PostgreSQL, MySQL and more. DB-VA also promotes an
easy migration between databases by enabling the same set of ORM Java objects to work with different databases and
transforms the proprietary data type that suit the default database specified.

• Database Reverse Engineering

DB-VA allows you to reverse engineering an existing database through JDBC into the entity-relational model.
Developers can transform the entity-relational model to object model and redesign the database for further
development.

Figure 1.4 - Reverse and Forward Engineering for database

• Class Reverse Engineering

DB-VA allows you to reverse engineering Java classes and Hibernate models into the persistent object model.
Developers can transform the persistent object model to data model and redesign the models for further development.

• IDE Integration

DB-VA is not only a standalone application, but also integrated to the major Integrated Development Environments
(IDEs), including Eclipse/WebSphere®, Borland JBuilder®, NetBeans/Sun™ ONE, IntelliJ IDEA™ Oracle
JDeveloper, BEA WebLogic Workshop™and Visual Studio .NET, which results in streamlining the entire model-
code-deploy software development process.

Figure 1.5 - The supported IDE

DB-VA Designer’s Guide Chapter 1 – Working with DB Visual ARCHITECT

1-5

• Visual Modeling for Object and Data Models

DB-VA inherits the visual modeling environment from Visual Paradigm for UML, a well-known UML CASE Tool, it
not only provides an intuitive inline editing for both object and data models, but also adopts the resource-centric
interface for assisting frequently performed tasks.

Figure 1.6 - Consistence user interface

Database Configuration

As DB-VA acts as a bridge between object model, data model and relational database, you have to configure the database
connection to ensure the environment.

To configure the database connection:

1. From the menu, click Tools > Object-Relational Mapping (ORM) > Database Configuration....

Figure 1.7 - To open the Database Configuration dialog

The Database Configuration dialog box is displayed.

2. Select the Language for the project to be developed from the drop-down menu. By default, Java language is selected.

Figure 1.8 - Select the programming language

DB-VA Designer’s Guide Chapter 1 – Working with DB Visual ARCHITECT

1-6

Database Configuration for Java Project

For Java project development, continue the following steps for configuring the database connection.

1. Place a check mark beside the desired database for configuration.

Figure 1.9 - Database Configuration for Java Project

2. Enter the database setting.

For the Driver file , click button to specify the Driver file . The Driver file can be specified either by
Download, Update or Browse. For more information, refer to the description of Specifying JDBC Driver File and
Supporting Automatic Download of JDBC Driver sections.

For the Driver , select the JDBC Driver from the drop-down menu. The driverï¿½ï¿½s description will be shown in
the Database Driver Description pane.

You can press button to modify the Driver class and Dialect manually.

For the Connection URL, enter the information required for the JDBC Driver to connect to the database.

For the User, enter the valid username who has the access right to connect to the database.
For the Password, enter the corresponding password for the user to connect to the database.
For the Engine, select the type of engine used in generating the MySQL database.

Note

The Engine option in the Database Setting is only provided when configuring MySQL
database for Java project.

3. Click the Test Connection button to test whether the database can be connected.

Figure 1.10 - test Connection button

If the database can be connected, you will be prompted by a dialog box showing Connect Successful. Otherwise, a
Connection Exception dialog box will be prompted.

Figure 1.11 - Connection successful/failure message

DB-VA Designer’s Guide Chapter 1 – Working with DB Visual ARCHITECT

1-7

Configuring Multiple Database Settings
DB-VA supports setting up multiple database configurations in the same project environment. To configure multiple database
settings, simply place check marks beside the desired databases and specify the configuration for each database.

Generally, only one database is used for an application. As DB-VA supports multiple database configurations, only one
database configuration will be applied as the default database connection for the generation of code and database.

You can set the default database connection in one of the two ways:

• Right-click on the desired database, select Set as default.

Figure 1.12 - Set the default database type

• Select the desired database, click Set as default button on the Database Setting.

Figure 1.13 - Set the database configure as default

Specifying JDBC Driver File
In order to connect the database successfully, JDBC driver file must be specified for Java project. DB-VA provides three ways
to specify the driver files. They are selecting the suitable driver file manually, downloading driver files automatically and
updating the driver files automatically.

DB-VA supports the automatic download of JDBC drivers for database connection in Java project development. The drivers
downloaded automatically are stored in the %VP_Suite_Installation_Directory%/ormlib/driver directory.

When configuring the database connection for any new projects, DB-VA automatically checks if the desired driver file exists
in the driver directory, DB-VA specifies the driver file in the database configuration automatically.

To specify the driver file, click on the button, either click Download, Update or Browse... from the drop-down menu.

Figure 1.14 - Download JDBC Driver

• Download

If Download is clicked, DB-VA automatically downloads the desired driver file for the desired database. For more
information on downloading driver file automatically, refer to the description of Supporting Automatic Download of
JDBC Driver section.

DB-VA Designer’s Guide Chapter 1 – Working with DB Visual ARCHITECT

1-8

• Update

If Update is clicked, DB-VA automatically updates the driver file if there is an update version for the desired
database.

• Browse

If Browse is clicked, a File Chooser is shown, specify the location of the driver file.

Note

Update is only available if the driver file is automatically downloaded and stored in the
%VP_Suite_Installation_Directory%/ormlib/driver directory in advance.

Supporting Automatic Download of JDBC Driver
As DB-VA supports the automatic download of the driver files for connecting the database, it reduces the effort to find the
desired driver file from the Internet manually.

The following steps illustrate the automatic download of JDBC Driver for MySQL database as an example:

1. Click on the button, click Download from the drop-down menu.

Figure 1.15 - To download the driver

2. A Download Database Driver dialog box is shown allowing the proxy setting. To enable proxy for the Internet
connection, check the Use proxy option, and then fill in the information for proxy setting.

Figure 1.16 - Configure the proxy setting

The Download dialog box is shown indicating the download progress.

Figure 1.17 - The Download dialog show the download progress

DB-VA Designer’s Guide Chapter 1 – Working with DB Visual ARCHITECT

1-9

3. Click Close when the download is completed.

Figure 1.18 - The download complete message show in the download dialog

The driver file is shown on the Driver file of the Database Setting after download is done.

Figure 1.19 - Database setting

Note

After downloaded the driver file, <<MySQL Connector/J 3.1.10>> shown on the Driver file
indicates that the JDBC driver file is downloaded with the specified version number by DB-
VA.

Database Configuration for .Net Project

For .Net project development, continue the following steps for configuring the database connection.

1. Place a check mark beside the desired database for configuration.

Figure 1.20 - Database Configuration for .Net Project

DB-VA Designer’s Guide Chapter 1 – Working with DB Visual ARCHITECT

1-10

2. Enter the database setting.

For the Driver file , click button to specify the Driver file . The .NET Driver file can be specified either by
Download, Update or Browse. For more information, refer to the description of Specifying .NET Driver and Adapter
File and Supporting Automatic Download of .NET Driver and Adapter File section.

For the Adapter file, click button to specify the Adapter file. The Adapter file can be specified either by
Download, Update or Browse. For more information, refer to the description of Specifying .NET Driver and Adapter
File and Supporting Automatic Download of .NET Driver and Adapter File section.

For the Connection String, enter the information required for the .NET Driver to connect to the database.

For the Driver , select the .NET Driver from the drop-down menu.

You can press button to modify the Driver class and Dialect manually.

3. Click the Test Connection button to test whether the database can be connected.

Figure 1.21 - Test Connection button

If the database can be connected, you will be prompted by a dialog box showing Connect Successful. Otherwise, a
Connection Exception dialog box will be prompted.

Figure 1.22 - Connection successful/failure message

Configuring Multiple Database Settings
DB-VA supports setting up multiple database configurations in the same project environment. To configure multiple database
settings, simply place check marks beside the desired databases and specify the configuration for each database.

Generally, only one database is used for an application. As DB-VA supports multiple database configurations, only one
database configuration will be applied as the default database connection for the generation of code and database.

You can set the default database connection in one of the two ways:

• Right-click on the desired database, select Set as default.

Figure 1.23 - Set the database type as default

• Select the desired database, click Set as default button on the Database Setting.

Figure 1.24 - set the database setting as default

DB-VA Designer’s Guide Chapter 1 – Working with DB Visual ARCHITECT

1-11

Specifying .NET Driver File and Adapter File
In order to connect the database successfully, .NET driver file and Adapter File must be specified for .NET project. DB-VA
provides three ways to specify the driver files. They are selecting the suitable driver file manually, downloading driver files
automatically and updating the driver files automatically.

DB-VA supports the automatic download of .NET drivers and Adapter File for database connection in .NET project
development. The drivers downloaded automatically are stored in the %VP_Suite_Installation_Directory%/ormlib/driver
directory.

When configuring the database connection for any new projects, DB-VA automatically checks if the desired driver file exists
in the driver directory, DB-VA specifies the driver file in the database configuration automatically.

To specify the driver file, click on the button, either click Download, Update or Browse...from the drop-down menu.

Figure 1.25 - Download button

• Download

If Download is clicked, DB-VA automatically downloads the desired driver file for the desired database. For more
information on downloading driver file automatically, refer to the description of Supporting Automatic Download of
.NET Driver and Adapter File section.

• Update

If Update is clicked, DB-VA automatically updates the driver file if there is an update version for the desired
database.

• Browse

If Browse is clicked, a File Chooser is shown, specify the location of the driver file.

Note

Update is only available if the driver file is automatically downloaded and stored in the
%VP_Suite_Installation_Directory%/ormlib/driver directory in advance.

Supporting Automatic Download of .NET Driver and Adapter File
As DB-VA supports the automatic download of the driver files for connecting the database, it reduces the effort to find the
desired driver file from the Internet manually.

The following steps illustrate the automatic download of .NET Driver and Adapter File for MySQL database as an example:

1. Click on the button, click Download both Driver from the drop-down menu to download the driver and
adapter files at the same time.

DB-VA Designer’s Guide Chapter 1 – Working with DB Visual ARCHITECT

1-12

Figure 1.26 - Database Configuration for .NET

Note

The Driver file and Adapter file can be downloaded separately by selecting Download from its
drop-down menu respectively.

Driver file

Adapter file

Table 1.1

2. A Download Database Driver dialog box is shown allowing the proxy setting. To enable proxy for the Internet
connection, check the Use proxy option, and then fill in the information for proxy setting.

Figure 1.27 - Configure the proxy setting

The Download dialog box is shown indicating the download progress.

Figure 1.28 - Download dialog show the download progress

DB-VA Designer’s Guide Chapter 1 – Working with DB Visual ARCHITECT

1-13

3. Click Close when the download is complete.

Figure 1.29 - The download complete message show in download dialog

The driver file and adapter file are shown on the Driver file and Adapter file of the Database Setting after download
is done.

Figure 1.30 - Database Setting

Note

After downloaded the driver file, <<MySQL Connector/NET 1.0.4>> shown on the Driver file indicates
that the .NET driver file is downloaded with the specified version number by DB-VA.

Note

After downloaded the adapter file, <<MySQL Connector/J 3.1.10>> shown on the Adapter file indicates
that the adapter driver file is downloaded with the specified version number by DB-VA.

DB-VA Designer’s Guide Chapter 1 – Working with DB Visual ARCHITECT

1-14

Supported Database, JDBC Drivers and .NET Drivers

DB-VA provides an environment for visual modeling the developing system. By connecting the relational database to DB-VA
environment, DB-VA can automate the mapping between models and relational database. DB-VA supports the most common
relational database, including Oracle, DB2, Microsoft SQL Server, Sybase Adaptive Server Enterprise, Sybase SQL Anywhere,
MySQL, HSQLDB, Cloudscape/Derby and PostgreSQL. Their relative JDBC Drivers and .NET Drivers are listed in the
following tables.

In order to connect to any of the supported database, the relative JDBC and .NET Drivers are required for configuring the
database connection. All of the required JDBC and .Net Drivers will not be bundled with DB-VA. You can get the driver files
by using the automatic download facility provided, or download the driver file manually.

Table shows the Supported Database and their relative JDBC Drivers.

Database Name JDBC Drivers Name

Cloudscape/Derby 10 Cloudscape/Derby (Embedded), Cloudscape/Derby (Server)

DB2 7/8
DB2 (AS/400 Toolbox for Java JDBC Driver)
DB2 (App Driver)
DB2 (Net Driver)

HSQLDB 1.61-1.8
HSQLDB (In-process)
HSQLDB (Server)

IBM Informix
IBM Informix (Client)
IBM Informix (Server)

MS SQL Server 2000

MS SQL Server (DataDirect SequeLink Driver)
MS SQL Server (JSQL Driver)
MS SQL Server (JTURBO Driver)
MS SQL Server (Microsoft Driver)
MS SQL Server (WebLogic Connect Driver)
MS SQL Server (WebSphere Connect Driver)
MS SQL Server (jTDS Driver)

MySQL 3/4 MySQL (Connector/J Driver)

Oracle Oracle (DataDirect SequeLink Driver)

Oracle 8i Oracle8i (THIN JDBC Driver)

Oracle 9i Oracle9i

PostgreSQL PostgreSQL

Sybase Adaptive Server Enterprise 12.5
Sybase Adaptive Server Enterprise (jConnect Driver)
Sybase Adaptive Server Enterprise (JDS Driver)

Sybase SQL Anywhere 9 Sybase SQL Anywhere (jConnect Driver)

Table 1.2

Table shows the Supported Database and their relative .NET Drivers.

Database Name .NET Drivers Name

DB2 7/8 DB2 (DB2 UDB for iSeries .NET Data Provider)

MS SQL Server 2000 MS SQL Server

MySQL 3/4 MySQL (MySQL Connector/Net 1.0)

Oracle
Oracle (.NET Framework Data Provider)
Oracle (Oracle Data Provider for .NET)

PostgreSQL Postgre (Npgsql)

Table 1.3

DB-VA Designer’s Guide Chapter 1 – Working with DB Visual ARCHITECT

1-15

Supporting Multiple Database

As DB-VA supports multiple databases and allows you to configure multiple database settings, there may be differences in the
data type supported by these databases.

Assigning Data Types from Multiple Database

DB-VA allows you to specify the data type of the column in the database by using the drop-down menu of Type in the
Column Specification dialog box. By default, DB-VA provides a list of pre-defined data types which is general to all
databases.

Figure 1.31 - The pre-defined data types for all database

DB-VA also allows you to assign a data type which is database-specific.

1. Place a check mark beside the desired database in the Database Configuration dialog box.

Figure 1.32 - Set the database type

The database-specific data types will be automatically added to the list.

2. Select the database-specific data types from the drop-down menu. For example, data type, tinyint is specific to
MySQL database.

Figure 1.33 - The database-specific data types

Note

If you have checked multiple databases in the Database Configuration dialog box, all data
types supported by these databases will be added as an option for the drop-down menu.

DB-VA Designer’s Guide Chapter 1 – Working with DB Visual ARCHITECT

1-16

Displaying Data Type based on Default Database

As DB-VA provides a visual data modeling of the database depicted by the Entity Relationship Diagram (ERD), you are
allowed to enable and disable the display of data type for columns of the entities in the ERD. Since the DB-VA environment is
configured with a default database, the data type will be displayed according to the data type supported by the default database.

To display the data type for columns of entities in the ERD:

1. Right-click on the background of the ERD, select Show Column Types.

Figure 1.34 - To show column types

The data type for columns is displayed.

Figure 1.35 - entity with column types

Note

If the default database connection is changed, the data types for all columns will be changed
with respect to the new database connection automatically.

Example:

There is an entity, Customer in the ERD. Modify the default database connection from MySQL to Oracle, the data types will be
changed automatically.

Figure 1.36 - Data type convert automatically

Using Wizard 2

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-2

Chapter 2 - Using Wizard

DB Visual ARCHITECT (DB-VA) provides a wizard to help you generate persistent code and/or database either from
database, class diagram or entity relationship diagram. This chapter shows you how to use the wizard to generate code and/or
database. In this chapter:

• Introduction
• Generating Code from Database
• Generating Code and Database from ERD
• Generating Code and Database from Class Diagram

Introduction

Mapping objects to relational database is a complicated and error pound task in the development. As DB-VA acts as a bridge
between object model, data model and relational database, it automates the mappings between these models. Apart from these
mappings, DB-VA also supports the mapping between object models and persistent code. Hence, the persistent code can thus
map to the relational database.

DB-VA supports the synchronization between persistent code, object model, data model and relational database, it reduces the
development time for handling these tedious programming jobs between them. Moreover, your document will always keep up-
to-date. To support synchronization in-between persistent code and relational database, DB-VA allows you to generate
database and persistent code for your development project.

DB-VA provides you a wizard for the generation of persistent code and database. The wizard provides you with three options:

1. Generate Code from Database.
2. Generate Code and Database from Entity Relationship Diagram (ERD.
3. Generate Code and Database from Class Diagram.

To activate the Wizard:

1. On the menu, click Tools > Object-Relational Mapping (ORM) > Wizards....

Figure 2.1 - To open the Object-relational Mapping Wizard

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-3

2. A Wizard Welcome Page will be shown, select Language of the code to be generated from the drop-down menu,
either Java or C#.

Figure 2.2 - Select the programming language

3. Select one of the wizard options, and then click Next to proceed.

Figure 2.3 - Select the action to perform

Generating Code from Database

Figure 2.4 - Generate code from database

Upon selecting the option for Generate Code from Database, the wizard helps you generate persistent code from database
tables according to the requirements you specified throughout the wizard.

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-4

Follow the steps of the Generate Code From Database wizard:

1. Database Configuration
• For Java Language selected

Figure 2.5 - Database Configuration for Java

2. You are asked to define the database configuration. Refer to the descriptions in the Working with DB Visual
ARCHITECT chapter for information on how to configure the database in the Database Configuration for
Java Project section

• For C# Language selected

Figure 2.6 - Database Configuration for .NET

You are asked to define the database configuration. Refer to the descriptions in the Working with DB Visual
ARCHITECT chapter for information on how to configure the database in the Database Configuration for
.Net Project section.

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-5

3. Selecting Tables

Figure 2.7 - Select the Tables

DB-VA connects your database based on your options in the previous database configuration option pane and reverses
all database tables. You are asked to select the database tables which you want to generate persistent class to
manipulate those tables. By default, all the database tables are selected for the generation of code shown in the list of
Selected Tables. You can deselect the table by using the list of buttons between the list of Available Tables and
Selected Tables.

• Add Selected

Add the selected table from Available Tables to Selected Tables.

• Remove Selected

Remove the selected table from Selected Tables to Available Tables.

• Add All

Add all tables from Available Tables to Selected Tables.

• Remove All

Remove all tables from Selected Tables to Available Tables.

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-6

4. Class Details Configuration

Figure 2.8 - Class mapping

After selecting tables, you will be directed to a Class Details Configuration pane. You are asked to define the Class
Details for generating code. DB-VA generates the persistent classes based on the information defined here. You can
edit the class details by double-clicking the field.

• Package

Enter the package name. A package will be created to store the generated persistent code. If the package
name was not defined, you will be prompted by a dialog box warning you the classes will be generated in
default package.

Figure 2.9 - Generate classes in default package message

• Class

You can edit the class name which will be used as the name of the generated persistent code for a
corresponding table.

Figure 2.10 - Mapping Classes

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-7

• Associations

You can edit the role name for a reference in the class.

Figure 2.11 - Mapping Associations

You can deselect navigable for an association such that the reference for the target role will not be created.

Figure 2.12 - select the Navigable

• Attributes

You can edit the attribute name representing the column of the table.

Figure 2.13 - Mapping Attributes

• Custom Code Style

Click button, Custom Code Style Setting dialog box will be displayed. You can modify
the prefix or suffix of the Class, Attribute and Role Name.

Figure 2.14 - Custom Code Style setting dialog

For the Type, select the type of Class detail, either Class, Attribute or Role Name (PK) that you want to
apply code style.

For the Prefix/Suffix , select either Prefix or Suffix to be added or removed.
For the Add/Remove option, select the option for the action of code style to be applied.
For the Textbox, enter the word for either prefix or suffix.
For the Scope, select the scope of the code style to be applied to, either All or Selected.

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-8

Table shows the result of applying Code Style.

Code Style Before Applying After Applying

Add Prefix (E.g. pre_) Item pre_Item

Remove Prefix (E.g. pre_) pre_Item Item

Add Suffix (E.g. _suf) Item Item_suf

Remove (E.g. _suf) Item_suf Item

Table 2.1

5. Generate Code
• For Java Language selected

Figure 2.15 - Generate Code options for Java

You are asked to specify the code details. DB-VA generates the Java persistent code based on the
information defined here.

For Error Handling , select the way to handle errors when they occur.

• Return false/null - It returns false/null in the method to terminate its execution.
• Throw PersistentException - It throws a PersistentException which will be handled by the caller.
• Throw RuntimeException - It throws a RuntimeException which will be handled by the caller.

Figure 2.16 - Error handling options

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-9

For Exception Handling, select how to handle the exception, either Do not Show, Print to Error Stream or
Print to log4j.

Figure 2.17 - Exception Handling options

For Lazy Initialization , check the option to avoid the associated objects from being loaded when the main
object is loaded. Uncheck the option will result in loading the associated objects when the main object is
loaded.

For Output Path, specify the location to store the generated persistent code source file.

For Deploy to, select the type of application that you want to deploy to.

Figure 2.18 - Deployment options

For Association Handling, select the type of association handling to be sued, either Smart or Standard.

• Smart

With smart association handling, when you update one end of a bi-directional association, the
generated persistent code is able to update the other end automatically. Besides, you do not need to
cast the retrieved object(s) into its corresponding persistence class when retrieving object(s) from
the collection.

• Standard

With standard association handling, you must update both ends of a bi-directional association
manually to maintain the consistency of association. Besides, casting of object(s) to its
corresponding persistence class is required when retrieving object(s) from the collection.

Figure 2.19 - Association Handling

For Persistent API, select the type of persistent code to be generated, either Static Methods, Factory Class,
DAO or POJO.

Figure 2.20 - Persistent API options

For Generate Criteria, check the option for Generate Criteria to generate the criteria class for each ORM-
Persistable class. The criteria class supports querying the database by specifying the searching criteria.

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-10

For Select Optional Jar, select the libraries and JDBC driver to be included in the generation of the orm.jar
file. Click on the Select Optional Jar button, the Select Optional Jar dialog box is displayed. Check the
desired libraries to be included in the orm.jar which will be built at runtime.

Figure 2.21 - Select Optional Jar dialog

For Samples, sample files, including Java application, servlet, servlet filter and Java Server Page (JSP)
sample are available for generation. The generated sample files guide you through the usage of the Java
persistence class. You can check the options to generate the sample files for reference.

Figure 2.22 - Generate samples options

For Scripts, you can check the options to generate the scripts, including Ant File, Batch and Shell Script
which allow you to execute the scripts directly.

Figure 2.23 - Generate script options

For Advance Settings, you can define the Default Order Collection Type, Default Un-Order Collection
Type, Override toString Method and Flush Mode. Click on the Advance Settings button, select the desired
settings in the Advance Settings dialog box.

Figure 2.24 - Advance Setting dialog

For Default Order Collection Type, select the type of ordered collection to be used in handling the multiple
cardinality relationship, either List or Map.

For Default Un-Order Collection Type, select the type of un-ordered collection to be used in handling the
multiple cardinality relationship, either Set or Bag.

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-11

For Override toString Method, select the way that you want to override the toString method of the object.
There are three options provided to override the toString method as follows:

• ID Only - the toString method returns the value of the primary key of the object as string.
• All Properties - the toString method returns a string with the pattern

"Entity[<column1_name>=<column1_value><column2_name>=(column2_value>...]"
• No - the toString method will not be overridden.

For Flush Mode, select the flush mode, either Auto, Commit, Always or Never.

• For C# Language selected

Figure 2.25 - Generate Code options for C#

You are asked to specify the code details. DB-VA generates the .NET persistent code based on the
information defined here.

For Error Handling , select the way to handle errors when they occur.

• Return false/null - It returns false/null in the method to terminate its execution.
• Throw PersistentException - It throws a PersistentException which will be handled by the caller.

Figure 2.26 - Error Handling options

For Exception Handling, select how to handle the exception, either Do not Show, Print to Error Stream or
Print to log4net.

Figure 2.27 - Exception Handling options

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-12

For Lazy Initialization , check the option to avoid the associated objects from being loaded when the main
object is loaded. Uncheck the option will result in loading the associated objects when the main object is
loaded.

For Output Path, specify the location to store the generated persistent code source file.

For Association Handling, select the type of association handling to be sued, either Smart or Standard.

• Smart

With smart association handling, when you update one end of a bi-directional association, the
generated persistent code is able to update the other end automatically. Besides, you do not need to
cast the retrieved object(s) into its corresponding persistence class when retrieving object(s) from
the collection.

• Standard

With standard association handling, you must update both ends of a bi-directional association
manually to maintain the consistency of association. Besides, casting of object(s) to its
corresponding persistence class is required when retrieving object(s) from the collection.

Figure 2.28 - Association Handling options

For Persistent API, select the type of persistent code to be generated, either Static Methods, Factory Class,
DAO or POJO.

Figure 2.29 - Persistent API options

For Generate Criteria, check the option for Generate Criteria to generate the criteria class for each ORM-
Persistable class. The criteria class supports querying the database by specifying the searching criteria.

For C# Assembly Name, specify the name of the assembly for the .NET application which holds the
assembly metadata.

For Compile to DLL , check the option for Compile to DLL , DB-VA will generate DLL files which can be
referenced by .NET projects of language other than C# source.

Figure 2.30 - Compile to DLL options

For Sample, check the options to generate the sample files and C# project file which guide you through the
usage of the .NET persistent classes.

Figure 2.31 - Generate Sample options

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-13

For Advance Settings, you can define the Default Order Collection Type, Default Un-Order Collection Type
and Override toString Method. Click on the Advance Settings button, select the desired settings in the
Advance Settings dialog box.

Figure 2.32 - Advance Setting options

For Default Order Collection Type, select the type of ordered collection to be used in handling the multiple
cardinality relationship, either List or Map.

For Default Un-Order Collection Type, select the type of un-ordered collection to be used in handling the
multiple cardinality relationship, either Set or Bag.

For Override toString Method, select the way that you want to override the toString method of the object.
There are three options provided to override the toString method as follows:

• ID Only - the toString method returns the value of the primary key of the object as string.
• All Properties - the toString method returns a string with the pattern

"Entity[<column1_name>=<column1_value><column2_name>=(column2_value>...]"
• No - the toString method will not be overridden.

6. Click Finish, the Generate ORM Code/Database dialog box appears showing the progress of code generation. Click
Close when the generation is complete.

Figure 2.33 - Generate ORM Code/Database dialog

A class diagram and an entity relationship diagram will be generated automatically and added to your project. The
generated persistent code and required resources will be generated to the specified output path.

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-14

Generating Code and Database from ERD

Figure 2.34 - Generating Code and Database from ERD

Upon selecting the option for Generate Code and Database from ERD, the wizard helps you generate persistent code and
database from ERD with respect to the requirements you specified throughout the wizard.

Take the following ERD as an example:

Figure 2.35 - Entities Relationship Diagram

Follow the steps of the Generate Code and Database From ERD wizard:

1. Class Details Configuration

Figure 2.36 - Mapping Tables to Classes

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-15

You are asked to define the Class Details for generating code. DB-VA generates persistent classes based on the
information defined here. You can edit the class details by double-clicking the field.

• Package

Enter the package name. A package will be created to store the generated persistent code. If the package
name was not defined, you will be prompted by a dialog box warning you the classes will be generated in
default package.

Figure 2.37 - Confirm generate code as default package message

• Class

You can edit the class name which will be used as the name of the generated persistent code for a
corresponding table.

Figure 2.38 - Mapping classes

• Associations

You can edit the role name for a reference in the class.

Figure 2.39 - Mapping associations

You can deselect navigable for an association such that the reference for the target role will not be created.

Figure 2.40 - Select Navigable of association

• Attributes

You can edit the attribute name representing the column of the table.

Figure 2.41 - Mapping attributes

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-16

• Custom Code Style

Click button, Custom Code Style Setting dialog box will be displayed. You can modify
the prefix or suffix of the Class, Attribute and Role Name.

Figure 2.42 - Custom Code Style Setting dialog

For the Type, select the type of Class detail, either Class, Attribute or Role Name (PK) that you want to
apply code style.

For the Prefix/Suffix , select either Prefix or Suffix to be added or removed.
For the Add/Remove option, select the option for the action of code style to be applied.
For the Textbox, enter the word for either prefix or suffix.
For the Scope, select the scope of the code style to be applied to, either All or Selected.

Table shows the result of applying Code Style.

Code Style Before Applying After Applying

Add Prefix (E.g. pre_) Item pre_Item

Remove Prefix (E.g. pre_) pre_Item Item

Add Suffix (E.g. _suf) Item Item_suf

Remove (E.g. _suf) Item_suf Item

Table 2.2

2. Database Configuration
• For Java Language selected

Figure 2.43 - Database Configuration for Java

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-17

You are asked to define the database configuration. DB-VA generates the database based on the settings
defined here.

For Export to Database, check the option to allow altering the database.

For Generate DDL, check the option to allow the generation of DDL file.
For Quote SQL Identifier, select the option from the drop-down menu to enable using the reserved word.
By enabling Quote SQL Identifier, the reserved word used in database can be used as ordinary word in
generating database.

Figure 2.44 - Quote SQL Identifier options

For Connection, select the type of connection from the drop-down menu, either JDBC or Datasource.

Figure 2.45 - Connection options

For Use connection pool, check the option to enable using the connection pool for Java project.

Figure 2.46 - Use connection pool option

For Connection Pool Options, click the Connection Pool Options button to open the Connection Pool
Options dialog box for configuring the connection pool settings.

Figure 2.47 - Connection Pool Options dialog

For Database Setting, refer to the description on Database Configuration for Java Project section in the
Working with DB Visual ARCHITECT chapter for information on how to configure the database settings.

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-18

• For C# Language selected

Figure 2.48 - Database Configuration for C#

You are asked to define the database configuration. DB-VA generates the database based on the settings
defined here.

For Export to Database, check the option to allow altering the database.
For Generate DDL, check the option to allow the generation of DDL file.
For Quote SQL Identifier, select the option from the drop-down menu to enable using the reserved word.
By enabling Quote SQL Identifier, the reserved word used in database can be used as ordinary word in
generating database.

Figure 2.49 - Quote SQL Identifier options

For Database Setting, refer to the descriptions on Database Configuration for .Net Project section in the
Working with DB Visual ARCHITECT chapter for information on how to configure the database settings.

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-19

3. Generate Code
• For Java Language selected

Figure 2.50 - Generate Code setting for Java

You are asked to specify the code details. DB-VA generates the Java persistent code based on the
information defined here.

For Error Handling , select the way to handle errors when they occur.

• Return false/null - It returns false/null in the method to terminate its execution.
• Throw PersistentException - It throws a PersistentException which will be handled by the caller.
• Throw RuntimeException - It throws a RuntimeException which will be handled by the caller.

Figure 2.51 - Error Handling options

For Exception Handling, select how to handle the exception, either Do not Show, Print to Error Stream or
Print to log4j.

Figure 2.52 - Exception Handling options

For Lazy Initialization , check the option to avoid the associated objects from being loaded when the main
object is loaded. Uncheck the option will result in loading the associated objects when the main object is
loaded.

For Output Path, specify the location to store the generated persistent code source file.

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-20

For Deploy to, select the type of application that you want to deploy to.

Figure 2.53 - Deployment options

4. For Association Handling, select the type of association handling to be sued, either Smart or Standard.

• Smart

With smart association handling, when you update one end of a bi-directional association, the
generated persistent code is able to update the other end automatically. Besides, you do not need to
cast the retrieved object(s) into its corresponding persistence class when retrieving object(s) from
the collection.

• Standard

With standard association handling, you must update both ends of a bi-directional association
manually to maintain the consistency of association. Besides, casting of object(s) to its
corresponding persistence class is required when retrieving object(s) from the collection.

Figure 2.54 - Association Handling options

For Persistent API, select the type of persistent code to be generated, either Static Methods, Factory Class,
DAO or POJO.

Figure 2.55 - Persistent API options

For Generate Criteria, check the option for Generate Criteria to generate the criteria class for each ORM-
Persistable class. The criteria class supports querying the database by specifying the searching criteria.

For Select Optional Jar, select the libraries and JDBC driver to be included in the generation of the orm.jar
file. Click on the Select Optional Jar button, the Select Optional Jar dialog box is displayed. Check the
desired libraries to be included in the orm.jar which will be built at runtime.

Figure 2.56 - Select Optional Jar options

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-21

For Samples, sample files, including Java application, servlet, servlet filter and Java Server Page (JSP)
sample are available for generation. The generated sample files guide you through the usage of the Java
persistence class. You can check the options to generate the sample files for reference.

Figure 2.57 - Generate samples options

For Scripts, you can check the options to generate the scripts, including Ant File, Batch and Shell Script
which allow you to execute the scripts directly.

Figure 2.58 - Generate scripts options

For Advance Settings, you can define the Default Order Collection Type, Default Un-Order Collection
Type, Override toString Method and Flush Mode. Click on the Advance Settings button, select the desired
settings in the Advance Settings dialog box.

Figure 2.59 - Advance Settings dialog

For Default Order Collection Type, select the type of ordered collection to be used in handling the multiple
cardinality relationship, either List or Map.

For Default Un-Order Collection Type, select the type of un-ordered collection to be used in handling the
multiple cardinality relationship, either Set or Bag.

For Override toString Method, select the way that you want to override the toString method of the object.
There are three options provided to override the toString method as follows:

• ID Only - the toString method returns the value of the primary key of the object as string.
• All Properties - the toString method returns a string with the pattern

"Entity[<column1_name>=<column1_value><column2_name>=(column2_value>...]"
• No - the toString method will not be overridden.

For Flush Mode, select the flush mode, either Auto, Commit, Always or Never.

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-22

• For C# Language selected

Figure 2.60 - Generate Code setting for C#

You are asked to specify the code details. DB-VA generates the .NET persistent code based on the
information defined here.

For Error Handling , select the way to handle errors when they occur.

• Return false/null - It returns false/null in the method to terminate its execution.
• Throw PersistentException - It throws a PersistentException which will be handled by the caller.

Figure 2.61 - Error Handling options

For Exception Handling, select how to handle the exception, either Do not Show, Print to Error Stream or
Print to log4net.

Figure 2.62 - Exception Handling options

For Lazy Initialization , check the option to avoid the associated objects from being loaded when the main
object is loaded. Uncheck the option will result in loading the associated objects when the main object is
loaded.

For Output Path, specify the location to store the generated persistent code source file.

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-23

For Association Handling, select the type of association handling to be sued, either Smart or Standard.

• Smart

With smart association handling, when you update one end of a bi-directional association, the
generated persistent code is able to update the other end automatically. Besides, you do not need to
cast the retrieved object(s) into its corresponding persistence class when retrieving object(s) from
the collection.

• Standard

With standard association handling, you must update both ends of a bi-directional association
manually to maintain the consistency of association. Besides, casting of object(s) to its
corresponding persistence class is required when retrieving object(s) from the collection.

Figure 2.63 - Association Handling options

For Persistent API, select the type of persistent code to be generated, either Static Methods, Factory Class,
DAO or POJO.

Figure 2.64 - Persistent API options

For Generate Criteria, check the option for Generate Criteria to generate the criteria class for each ORM-
Persistable class. The criteria class supports querying the database by specifying the searching criteria.

For C# Assembly Name, specify the name of the assembly for the .NET application which holds the
assembly metadata.

For Compile to DLL , check the option for Compile to DLL , DB-VA will generate DLL files which can be
referenced by .NET projects of language other than C# source.

Figure 2.65 - Compile to DLL options

For Sample, check the options to generate the sample files and C# project file which guide you through the
usage of the .NET persistent classes.

Figure 2.66 - Generate Code sample options

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-24

For Advance Settings, you can define the Default Order Collection Type, Default Un-Order Collection Type
and Override toString Method. Click on the Advance Settings button, select the desired settings in the
Advance Settings dialog box.

Figure 2.67 - Advance Setting dialog

For Default Order Collection Type, select the type of ordered collection to be used in handling the multiple
cardinality relationship, either List or Map.

For Default Un-Order Collection Type, select the type of un-ordered collection to be used in handling the
multiple cardinality relationship, either Set or Bag.

For Override toString Method, select the way that you want to override the toString method of the object.
There are three options provided to override the toString method as follows:

• ID Only - the toString method returns the value of the primary key of the object as string.
• All Properties - the toString method returns a string with the pattern

"Entity[<column1_name>=<column1_value><column2_name>=(column2_value>...]"
• No - the toString method will not be overridden.

5. Click Finish, the Generate ORM Code/Database dialog box appears showing the progress of code generation. Click
Close when the generation is complete.

Figure 2.68 - Generate ORM Code/Database dialog

A class diagram will be generated automatically and added to your project. The generated persistent code and required
resources will be generated to the specified output path and the generated database will be set up to the specified
database configuration.

Generating Code and Database from Class Diagram

Figure 2.69 - Generate Code from Class Diagram

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-25

Upon selecting the option for Generate Code from Class Diagram, the wizard helps you generate persistent code and
database from class diagram with respect to the requirements you specified throughout the wizard.

Take the following class diagram as an example:

Figure 2.70 - Class Diagram

Follow the steps of the Generate Code and Database from Class Diagram wizard:

1. Selecting Classes

Figure 2.71 - Select the Classes

You are asked to select the classes on the class diagram which you want to generate persistent class to manipulate
persistent data. By default, all the classes stereotyped as ORM-Persistable on the class diagram are selected for the
generation of code and database shown in the list of Persistable Classes. You can deselect the persistable classes by
using the list of buttons between the list of Non Persistable Classes and Persistable Classes.

• Add Selected

Add the selected class from Non Persistable Classes to Persistable Classes.

• Remove Selected

Remove the selected class from Persistable Classes to Non Persistable Classes.

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-26

• Add All

Add all classes from Non Persistable Classes to Persistable Classes.

• Remove All

Remove all classes from Persistable Classes to Non Persistable Classes.

For the classes shown in the list of Persistable Classes, they will be stereotyped as ORM-
Persistable on the class diagram after the wizard is finished. Meanwhile, for the classes shown
in the list of Non Persistable Classes, they will not be stereotyped on the class diagram after
the wizard is finished.

2. Select Primary Key

Figure 2.72 - Select the Primary Key for the Table

You are asked to select the primary key for each class being mapped to data model and relational database. You can
either select an attribute as the primary key or let DB-VA generate the primary key automatically. Please change the
select by using the drop-down menu.

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-27

3. Table Details Configuration

Figure 2.73 - Mapping Tables to Classes

You are asked to define the Table Details for generating database and code. DB-VA generates database and persistent
classes based on the information defined here. You can edit the table details by double-clicking the field.

• Package

Enter the package name. A package will be created to store the generated persistent code. If the package
name was not defined, you will be prompted by a dialog box warning you the classes will be generated in
default package.

Figure 2.74 - Confirm generate classes in default package message

• Table

You can edit the table name which will be used as the name of the generated database table.

• Columns

You can edit the column name represented by the class.

Figure 2.75 - Mapping column

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-28

• Custom Code Style

Click button, Custom Code Style Setting dialog box will be displayed. You can modify
the prefix or suffix of the Table, Column, Primary Key and Foreign Key.

Figure 2.76 - Custom Code Style Setting dialog

For the Type, select the type of Table detail, either Table, Column, Primary Key or Foreign Key that you
want to apply code style.

For the Prefix/Suffix , select either Prefix or Suffix to be added or removed.
For the Add/Remove option, select the option for the action of code style to be applied.
For the Textbox, enter the word for either prefix or suffix.
For the Scope, select the scope of the code style to be applied to, either All or Selected.

Table shows the result of applying Code Style.

Code Style Before Applying After Applying

Add Prefix (E.g. pre_) Item pre_Item

Remove Prefix (E.g. pre_) pre_Item Item

Add Suffix (E.g. _suf) Item Item_suf

Remove (E.g. _suf) Item_suf Item

Table 2.3

4. Database Configuration
• For Java Language selected

Figure 2.77 - Database Configuration for Java

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-29

You are asked to define the database configuration. DB-VA generates the database based on the settings
defined here.

For Export to Database, check the option to allow altering the database.
For Generate DDL, check the option to allow the generation of DDL file.
For Quote SQL Identifier, select the option from the drop-down menu to enable using the reserved word.
By enabling Quote SQL Identifier, the reserved word used in database can be used as ordinary word in
generating database.

Figure 2.78 - Quote SQL Identifier

For Connection, select the type of connection from the drop-down menu, either JDBC or Datasource.

Figure 2.79 - Connection options

For Use connection pool, check the option to enable using the connection pool for Java project.

Figure 2.80 - Use connection pool options

For Connection Pool Options, click the Connection Pool Options button to open the Connection Pool
Options dialog box for configuring the connection pool settings.

Figure 2.81 - Connection Pool Options dialog

For Database Setting, refer to the description on Database Configuration for Java Project section in the
Working with DB Visual ARCHITECT chapter for information on how to configure the database settings.

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-30

• For C# Language selected

Figure 2.82 - Database Configuration for C#

You are asked to define the database configuration. DB-VA generates the database based on the settings
defined here.

For Export to Database, check the option to allow altering the database.

For Generate DDL, check the option to allow the generation of DDL file.
For Quote SQL Identifier, select the option from the drop-down menu to enable using the reserved word.
By enabling Quote SQL Identifier, the reserved word used in database can be used as ordinary word in
generating database.

Figure 2.83 - Quote SQL Identifier options

For Database Setting, refer to the descriptions on Database Configuration for .Net Project section in the
Working with DB Visual ARCHITECT chapter for information on how to configure the database settings.

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-31

5. Generate Code
• For Java Language selected

Figure 2.84 - Generate Code setting for Java

You are asked to specify the code details. DB-VA generates the Java persistent code based on the
information defined here.

For Generate Code, check the option to allow the generation of source code.

For Error Handling , select the way to handle errors when they occur.

• Return false/null - It returns false/null in the method to terminate its execution.
• Throw PersistentException - It throws a PersistentException which will be handled by the caller.
• Throw RuntimeException - It throws a RuntimeException which will be handled by the caller.

Figure 2.85 - Error Handling options

For Exception Handling, select how to handle the exception, either Do not Show, Print to Error Stream or
Print to log4j.

Figure 2.86 - Exception Handling options

For Lazy Initialization , check the option to avoid the associated objects from being loaded when the main
object is loaded. Uncheck the option will result in loading the associated objects when the main object is
loaded.

For Output Path, specify the location to store the generated persistent code source file.

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-32

For Deploy to, select the type of application that you want to deploy to.

Figure 2.87 - Deployment options

For Association Handling, select the type of association handling to be sued, either Smart or Standard.

• Smart

With smart association handling, when you update one end of a bi-directional association, the
generated persistent code is able to update the other end automatically. Besides, you do not need to
cast the retrieved object(s) into its corresponding persistence class when retrieving object(s) from
the collection.

• Standard

With standard association handling, you must update both ends of a bi-directional association
manually to maintain the consistency of association. Besides, casting of object(s) to its
corresponding persistence class is required when retrieving object(s) from the collection.

Figure 2.88 - Association Handling options

For Persistent API, select the type of persistent code to be generated, either Static Methods, Factory Class,
DAO or POJO.

Figure 2.89 - Persistent API options

For Generate Criteria, check the option for Generate Criteria to generate the criteria class for each ORM-
Persistable class. The criteria class supports querying the database by specifying the searching criteria.

For Select Optional Jar, select the libraries and JDBC driver to be included in the generation of the orm.jar
file. Click on the Select Optional Jar button, the Select Optional Jar dialog box is displayed. Check the
desired libraries to be included in the orm.jar which will be built at runtime.

Figure 2.90 - Select Optional Jar dialog

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-33

For Samples, sample files, including Java application, servlet, servlet filter and Java Server Page (JSP)
sample are available for generation. The generated sample files guide you through the usage of the Java
persistence class. You can check the options to generate the sample files for reference.

Figure 2.91 - Generate Samples options

For Scripts, you can check the options to generate the scripts, including Ant File, Batch and Shell Script
which allow you to execute the scripts directly.

Figure 2.92 - Generate scripts options

For Advance Settings, you can define the Default Order Collection Type, Default Un-Order Collection
Type, Override toString Method and Flush Mode. Click on the Advance Settings button, select the desired
settings in the Advance Settings dialog box.

Figure 2.93 - Advance Setting dialog

For Default Order Collection Type, select the type of ordered collection to be used in handling the multiple
cardinality relationship, either List or Map.

For Default Un-Order Collection Type, select the type of un-ordered collection to be used in handling the
multiple cardinality relationship, either Set or Bag.

For Override toString Method, select the way that you want to override the toString method of the object.
There are three options provided to override the toString method as follows:

• ID Only - the toString method returns the value of the primary key of the object as string.
• All Properties - the toString method returns a string with the pattern

"Entity[<column1_name>=<column1_value><column2_name>=(column2_value>...]"
• No - the toString method will not be overridden.

For Flush Mode, select the flush mode, either Auto, Commit, Always or Never.

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-34

• For C# Language selected

Figure 2.94 - Generate Code Setting for C#

You are asked to specify the code details. DB-VA generates the .NET persistent code based on the
information defined here.

For Generate Code, check the option to allow the generation of source code.

For Error Handling , select the way to handle errors when they occur.

• Return false/null - It returns false/null in the method to terminate its execution.
• Throw PersistentException - It throws a PersistentException which will be handled by the caller.

Figure 2.95 - Error Handling options

For Exception Handling, select how to handle the exception, either Do not Show, Print to Error Stream or
Print to log4net.

Figure 2.96 - Exception Handling options

For Lazy Initialization , check the option to avoid the associated objects from being loaded when the main
object is loaded. Uncheck the option will result in loading the associated objects when the main object is
loaded.

For Output Path, specify the location to store the generated persistent code source file.

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-35

For Association Handling, select the type of association handling to be sued, either Smart or Standard.

• Smart

With smart association handling, when you update one end of a bi-directional association, the
generated persistent code is able to update the other end automatically. Besides, you do not need to
cast the retrieved object(s) into its corresponding persistence class when retrieving object(s) from
the collection.

• Standard

With standard association handling, you must update both ends of a bi-directional association
manually to maintain the consistency of association. Besides, casting of object(s) to its
corresponding persistence class is required when retrieving object(s) from the collection.

Figure 2.97 - Association Handling options

For Persistent API, select the type of persistent code to be generated, either Static Methods, Factory Class,
DAO or POJO.

Figure 2.98 - Persistent API options

For Generate Criteria, check the option for Generate Criteria to generate the criteria class for each ORM-
Persistable class. The criteria class supports querying the database by specifying the searching criteria.

For C# Assembly Name, specify the name of the assembly for the .NET application which holds the
assembly metadata.

For Compile to DLL , check the option for Compile to DLL , DB-VA will generate DLL files which can be
referenced by .NET projects of language other than C# source.

Figure 2.90 - Compile to DLL options

For Sample, check the options to generate the sample files and C# project file which guide you through the
usage of the .NET persistent classes.

Figure 2.91 - Generate sample options

DB-VA Designer’s Guide Chapter 2 – Using Wizard

2-36

For Advance Settings, you can define the Default Order Collection Type, Default Un-Order Collection Type
and Override toString Method. Click on the Advance Settings button, select the desired settings in the
Advance Settings dialog box.

Figure 2.92 - Advance Setting dialog

For Default Order Collection Type, select the type of ordered collection to be used in handling the multiple
cardinality relationship, either List or Map.

For Default Un-Order Collection Type, select the type of un-ordered collection to be used in handling the
multiple cardinality relationship, either Set or Bag.

For Override toString Method, select the way that you want to override the toString method of the object.
There are three options provided to override the toString method as follows:

• ID Only - the toString method returns the value of the primary key of the object as string.
• All Properties - the toString method returns a string with the pattern

"Entity[<column1_name>=<column1_value><column2_name>=(column2_value>...]"
• No - the toString method will not be overridden.

Wizard for Generate Code and Database from Class Diagram option provides an option of
generating code to you. By default, the Generate Code option is selected. If you do not want to
generate code from class diagram, please deselect the Generate Code option. In this case, only
database will be generated while persistent code will not be generated.

6. Click Finish, the Generate ORM Code/Database dialog box appears showing the progress of code generation. Click
Close when the generation is complete.

An entity relationship diagram will be generated automatically and added to your project. The generated persistent
code and required resources will be generated to the specified output path and the generated database will be set up to
the specified database configuration.

Designing Object Model with
UML Class Diagram 3

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-2

Chapter 3 - Designing Object Model with UML
Class Diagram

DB Visual ARCHITECT (DB-VA) provides you a visual modeling environment for the object model of an application. This
chapter shows you how to depict the object models by using a UML Class Diagram.

In this chapter:

• Introduction
• Creating Object Model with Class Diagram
• Defining Package for Classes
• Specifying Stereotypes
• Specifying Inheritance Strategy
• Specifying Collection Type
• Defining ORM Qualifier
• Customizing SQL

Introduction

An object is a self-contained entity with well-defined characteristics and behaviors while the characteristics and behaviors are
represented by attributes and operations respectively. A class is a generic definition for a set of similar objects. Hence, an
object is an instance of a class. An object model provides a static conceptual view of an application. It shows the key
components (objects) and their relationships (associations) within the application system.

DB-VA supports visual modeling for object models, not only by creating a new object model, but also by transforming from a
data model. As DB-VA automates object-relational mapping, DB-VA supports the generation of database, code and persistence
layer for Java model API and .NET model API, which in turn streamlines the model-code-deploy software development
process.

Creating Object Model with Class Diagram

A class diagram can be used to describe the objects and classes inside a system and the relationships between them; and thus, a
class diagram is also known as an object model. The class diagram identifies the high-level entities of the system. DB-VA
comes with a complete UML 2.0 class diagram for object modeling.

The following section describes how you can depict an object model using the class diagram. DB-VA also supports the
generation of persistent code based on the object model, which will be briefly described in the DB-VA Programmer's Guide.

DB-VA provides you with two ways to create a Class Diagram:

1. Drawing a Class Diagram
2. Synchronizing from Data Model to Object Model

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-3

Drawing a Class Diagram

You can create a new class diagram in one of the three ways:

• On the menu, click File > New Diagram > UML Diagrams > Class Diagram.

Figure 3.1 - Create a Class Diagram

• On the Diagram Navigator, right-click Class Diagram > Create Class Diagram.

Figure 3.2 - Create Class Diagram on Diagram Navigator

• On the toolbar, click the New Class Diagram icon.

A new class diagram pane is displayed.

Adding Class

1. On the diagram toolbar, click the Class shape icon.

Figure 3.3 - Class shape icon

2. Click a location in the diagram pane.

DB-VA places an icon representing the class element on the diagram.

3. Type a name for the Class element.
• You can edit the name by double-clicking the name or by pressing the F2 button.

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-4

Adding ORM-Persistable Class

ORM-Persistable class is capable of manipulating the persistent data with the relational database. In supporting the generation
of persistent code, ORM-Persistable classes should be used in object modeling. Classes added to the class diagram can be
stereotyped as ORM-Persistable to manipulate the database. For information on how to specify the stereotype to a class, refer
to Specifying Stereotypes section.

DB-VA provides an alternative way to add the ORM-Persistable class easily.

1. On the diagram toolbar, click the Class shape icon and hold for a while, a pop-up menu shows.

Figure 3.4 - Click on Class shape icon

2. Select ORM-Persistable Class from the pop-up menu.

Figure 3.5 - Select ORM-Persistable Class on popup menu

3. Click a location in the diagram pane.

DB-VA places a class shape icon which is marked with <<ORM Persistable>> on the diagram.

Figure 3.6 - ORM Persistable Class

4. Type a name for the ORM-Persistable Class.
• You can edit the name by double-clicking the name or by pressing the F2 button.

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-5

Modifying Class Specification

A class specification displays the class properties and relationships.

You can display the Class Specification in one of the two ways:

• Click on a class, click the Open Specification resource located at the top-right corner of the class.

Figure 3.7 - Open Specification resource-centric

• Right-click the class, click Open Specification...from the pop-up menu.

Figure 3.8 - Open specification by click on menu

Class Specification dialog box is displayed, you can modify the class properties and relationships.

Figure 3.9 - Class Specification dialog

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-6

Adding Attribute
An attribute is a property of a class which has a name, a value and also has a type to describe the characteristic of an object.

1. You can add attribute to the class in one of the three ways:
• Right-click on a class, select Add > Attribute .

Figure 3.10 -

2.

A new attribute is added, type the attribute name and type in the form of "attribute_name: type". You can also edit the
attribute name by double-clicking the attribute name or by pressing the F2 button.

• Click on a class, press the keyboard shortcut - Alt + Shift + A.
• Using Class specification dialog:

1. Right-click the class element, click Open Specification....
2. Click the Attributes Tab, then click Add.

Attribute Specification dialog box is displayed, you can modify the attribute name and properties, such as
type.

Figure 3.11 - Class Specification dialog

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-7

Modifying Attribute Specification

An attribute specification displays the attribute properties, such as name, type, and initial value etc.

To open the Attribute Specification:

1. Right-click the attribute, click Open Specification...from the pop-up menu.

Figure 3.12 - To open attribute specification

The Attribute Specification dialog box is displayed, you can modify the attribute properties.

Figure 3.13 - Attribute Specification dialog

Adding Association
An association refers to the relationship specifying the type of link that exists between objects. It shows how the objects are
related to each other.

You can add an association to the classes in one of the two ways:

• Using Resource-Centric Interface
1. Click on a class, a group of valid editing resources is displayed around the shape.

Figure 3.14 - Resource-Centric

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-8

2. Mouse over the smart resource of association, select the desired resource, such as "One-to-Many Bi-
directional Association - > Class".

Figure 3.15 - "One-to-Many Bi-directional Association -> Class" resource

3. Drag the resource to the associated class.

Figure 3.16 - Create an association

Smart resource is a kind of resource which groups the resources of similar purpose together and
enables the last selected resource (the default resource) of the group to be visible. To see all the
resources, mouse over the default resource to expand it.

• Using Toolbar icon
1. On the diagram toolbar, click the Association icon.

Figure 3.17 - Association icon button

2. Click on a class and drag to the associated class.

A connector is added between the two classes.

Figure 3.18 - An association are created

DB-VA automatically creates the roles in an association between ORM-Persistable classes.

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-9

Modifying Association Specification

You can edit the association specification in one of the three ways:

• Using Open Specification
1. Right-click on the connection line, click Open Specification... from the pop-up menu.

Association Specification dialog box is displayed, you can modify the association properties, Roles of
classes in Association End From and To, Multiplicity and Navigation etc.

Figure 3.19 - Association Specification dialog

• Using Pop-up Menu
1. Right-click on the connection line, the property of the association specification is displayed in the pop-up

menu, including Navigable, Multiplicity , Visibility , Aggregation Kind and Edit Role Name...,
Qualifier... .

Figure 3.20 - Modify association specification by using popup menu

2. Select the property that you want to edit, check the desired value.

If you right-click on the connection line towards a class, the pop-up window shows the
properties of association specification of the respective class. If you right-click in the middle of
the connection line, the pop-up window shows all properties of association specification of
both classes.

Role name of the class describes how it acts in the association which will be used in the
generation of persistent code. Be sure that you have given the role names to the classes in the
association in order to proceed to the generation of code.

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-10

• Using Property Pane
1. On the menu, click View > Panes > Property.

The property pane will be displayed.

2. Click on the connection line.

The properties of the association specification are displayed in the property pane. You can edit the property
under the property pane.

Figure 3.21 - Property Pane

Adding Operation
An operation, also called function or method is the behavior of an object relates to how it acts and reacts.

You can add operation to the class in one of the three ways:

• Right-click on a class, select Add > Operation.

Figure 3.22 - Add an operation

A new operation is added, enter the operation in the form of "operation_name(parameter_name: type) : return_type". You
can also edit the operation name by double-clicking the operation or by pressing the F2 button.

• Click on a class, press the keyboard shortcut - Alt + Shift + O.
• Using Class Specification dialog:

1. Right-click the class element, click Open Specification....
2. Click the Operations tab, then click Add.

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-11

Operation Specification dialog box is displayed, you can modify the operation name and properties, such as
return type, parameters.

Figure 3.23 - Add operation in Class Specification dialog

Modifying Operation Specification

An operation specification displays the operation properties, such as name, visibility, return type, and parameters etc.

To open the Operation Specification:

1. Right-click the operation, click Open Specification... from the pop-up menu.

Figure 3.24 - To open operation specification

The Operation Specification dialog box is displayed, you can modify the operation properties.

Figure 3.25 - Operation Specification dialog

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-12

Adding ORM Implementation Class
ORM-Persistable class is used to generate the persistent class which has the ability to access the database including the basic
operations for add, update, delete and search. As the generated code provides the basic operations for manipulating the
persistent data, you may find it insufficient and want to add extra logic to it.

DB-VA promotes the use of ORM Implementation Class to add extra logic to the ORM-Persistable class. When generating the
persistent code, the ORM implementation class will also be generated, and thus you can implement the logic to the method in
the generated implementation class for manipulating the persistent data.

To add an ORM implementation class:

1. Create an ORM-Persistable class with an operation for adding extra logic.

Figure 3.26 - ORM-Persistable class with an operation

2. Mouse over the class and drag the resource of "Create ORM Implementation Class" to the diagram pane.

Figure 3.27 - "Create ORM Implementation Class" resource

The implementation class is created and connected to the source class with generalization stereotyped as <<ORM
Implementation>>. The source class becomes an abstract class with an abstract operation.

Figure 3.28 - ORM Persistable Class and ORM Implementation Class

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-13

Synchronizing from Data Model to Object Model

DB-VA allows you to generate a Class Diagram from an ERD by synchronization if there is an ERD.

You can synchronize the ERD to Class Diagram in one of the three ways:

• On the menu, click Tools > Object-Relational Mapping (ORM) > Synchronize to Class Diagram.

Figure 3.29 - Synchronize ERD to Class Diagram

• Right-click on the ERD, select Synchronize to Class Diagram.

Figure 3.30 - Synchronize to Class Diagram by click on popup menu

• On the ERD, hold down the right-mouse button, move the mouse from right to left to form the gesture. A blue path is
shown indicating the gesture.

Figure 3.31 - Synchronize to Class Diagram by using Gesture

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-14

A class diagram is generated and can be found under the Diagram Navigator.

Figure 3.31 - The generated Class Diagram

Defining Package for Classes

DB-VA provides you with two alternative ways to define the packages for the classes.

• Enter the package name to the <default package> located at the top-left corner of the class diagram by double-
clicking the <default package>.

Figure 3.32 - Define the package

• Create a package element on the diagram:
1. On the diagram toolbar, click the Package shape icon.

Figure 3.33 - Click on the Package icon

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-15

2. Click a location in the diagram pane to create a package element on the diagram.

Figure 3.34 - Rename the Package element

3. Type a name for the Package element.
4. Move the desired Class elements to the package

Figure 3.35 - Move the Class element into the Package element

After defining the packages to the classes, the classes are inside the package and depicted on the class repository.

Figure 3.36 - Class Repository show the Classes in the package

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-16

Specifying Stereotypes

Stereotype extends the semantics of the UML metamodel. It classifies the element in what respects it behaves as an instance of
metamodel. In order to enable the mapping between object model and relational database, the class has to be stereotyped as
ORM Persistable.

To specify the stereotypes of a class:

1. Right-click a class, select Stereotypes > Stereotypes....

Figure 3.37 - To add/remove stereotypes

The Class Specification dialog box is shown with Stereotypes Tab

Figure 3.38 - Class Specification dialog (Stereotypes Tab)

2. Select ORM Persistable, then > button and OK .

Figure 3.39 - Class with stereotypes

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-17

Specifying Inheritance Strategy

In a generalization, the subclass inherits all the features of the superclass. DB-VA provides two inheritance strategies - table
per class hierarchy and table per subclass to transform the generalization hierarchy to relational model. By default, table per
class hierarchy is used for the generalization.

When transforming generalization into relational model, DB-VA transforms the generalization according to the inheritance
strategy applied. For more information on the transformation, refer to the description of Mapping Inheritance/Generalization
section.

You can specify the inheritance strategy in one of the two ways:

• Specifying from Superclass
1. Right-click the superclass, select ORM > ORM Class Details...from the pop-up menu. The Class

Specification dialog showing the ORM Class Detail tab is displayed.

Figure 3.40 - To open ORM Class Detail

2. Click Subclasses... to open the Inheritance Strategy dialog box.

Figure 3.41 - Class Specification (ORM Class Detail Tab)

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-18

3. Select the desired subclass from the generalization tree, select the Inheritance Strategy from the drop-down
menu, and then click Apply .

Figure 3.42 - Select the Inheritance Strategy

• Specifying from Subclass
1. Right-click the subclass, select ORM > ORM Class Details... from the pop-up menu. The Class

Specification dialog box showing the ORM Class Detail tab is displayed.

Figure 3.43 - Open ORM Class Detail for the Sub-Class

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-19

2. Select the Inheritance strategy from the drop-down menu.

Figure 3.44 - Select the Inheritance Strategy

These two inheritance strategies can be applied to different subclasses within a generalization hierarchy in
Java project. Applying two strategies to different subclasses within a generalization in .NET project will
result in error when the generation of code and database.

Specifying Collection Type

If one end of an association contains a multiplicity of many, a collection class will be generated for handling the multiple
instances. DB-VA allows you to specify the type of collection, including set, bag, list and map.

Set is an unordered collection that does not allow duplication of objects. Bag is an unordered collection that may contain
duplicate objects. List is an ordered collection that allows duplication of objects. Map is an ordered collection that maps keys to
values while each key can map to exactly one value.

You can specify the collection type in one of the two ways:

• Right-click on the connection line, select the desired collection type from the pop-up menu of ORM > Collection
Type.

Figure 3.45 - Set the Collection Type in popup menu

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-20

• Using Association Specification dialog:
1. Right-click on the connection line, click Open Specification...from the pop-up menu.

Figure 3.46 - To open the association specification

2. Click the ORM Association Detail tab, select the Collection Type from the drop-down menu.

Figure 3.47 - Association Specification (ORM Association Detail Tab)

Defining ORM Qualifier

ORM Qualifier is used to specify the extra retrieval rules of the generated persistent class for querying the database. DB-VA
allows you to define the ORM Qualifiers of the classes in the class diagram before the generation of persistent code. For more
information on the usage of ORM Qualifier, refer to the DB-VA Programmer's Guide.

1. Open the ORM Qualifier tab inside the Class Specification dialog box in one of the two ways:
• Right-click on the ORM-Persistable class, select ORM > ORM Query... from the pop-up menu. The Class

Specification dialog box showing the ORM Query tab is displayed.

Figure 3.48 - To edit the ORM Qualifier

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-21

• Edit ORM Qualifier in Class Specification dialog:
1. Right-click on an ORM-Persistable class that you want to add extra retrieval rules, click Open

Specification.

Figure 3.49 - To open the Class Specification dialog

2. Click the ORM Query tab.

Figure 3.50 - Class Specification dialog (ORM Query Tab)

2. Click Add, the ORM Qualifier Specification dialog box is displayed with a list of attributes of the selected class.
3. Enter the name of the ORM Qualifier, place a check mark for the Key column of the attribute that will be used in

querying the database.

Figure 3.51 - ORM Qualifier Specification dialog

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-22

4. Click OK to confirm adding the ORM Qualifier. The newly added ORM Qualifier is listed on the ORM Query tab.

Figure 3.52 - ORM Qualifier added in the ORM Qualifiers list

Customizing SQL

DB-VA generates SQL statements which are ready-to-use for accessing the database. In some cases, you may find the
generated SQL statements not appropriate for your needs. DB-VA allows you to override the generated SQL statements,
including the Insert, Update and Delete statements whenever you want to.

To customize the generated SQL statements:

1. Right-click on an ORM-Persistable class that you want to customize the SQL statements, select ORM > ORM Class
Details...from the pop-up menu. The Class Specification dialog box showing the ORM Class Detail tab is displayed.

Figure 3.53 - Open the ORM Class Detail

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-23

2. Select the type of SQL statement that you want to customize.

Figure 3.54 - Class Specification dialog (ORM Class Detail)

3. Click Generate SQL to generate the ready-to-use SQL statement.

Figure 3.55 - Generate Insert SQL statement

The SQL statement is generated based on the property of class.

Figure 3.56 - The generated Insert SQL statement

4. Modify the SQL statement to the desired one.

Figure 3.57 - The modified SQL statement

DB-VA Designer’s Guide Chapter 3 – Designing Object Model with UML Class Diagram

3-24

Designing Data Model by
Entity Relationship Diagram 4

DB-VA Designer’s Guide Chapter 4 – Designing Data Model by Entity Relationship Diagram

4-2

Chapter 4 - Designing Data Model by Entity
Relationship Diagram

DB Visual ARCHITECT (DB-VA) provides you a visual modeling environment for the object model of an application. This
chapter shows you how to depict the object models by using Entity Relationship Diagram.

In this chapter:

• Introduction
• Creating Data Model by Entity Relationship Diagram
• Creating Array Table in Data Model
• Creating Partial Table in Data Model
• Copying SQL Statements

Introduction

An entity is an object in the business or system with well-defined characteristics which are represented by columns showing
what information can be stored. In relational databases, an entity refers to a record structure, i.e. table.

A data model provides the lower-level detail of a relational database of an application. It shows the physical database models
and their relationships in an application. An entity relationship diagram can be used to describe the entities inside a system and
their relationships with each other; the entity relationship diagram is also known as a data model.

DB-VA supports visual modeling for data models, not only by creating a new data model, but also by transforming from an
object model. As DB-VA automates object-relational mapping, DB-VA supports the generation of database, code and
persistence layer for Java model API and .NET model API, which in turn streamlines the model-code-deploy software
development process.

Creating Data Model by Entity Relationship Diagram

Entity relationship diagram is a graphical representation of a data model of an application. It acts as the basis for mapping the
application to the relational database.

The following section describes how you can depict the data model using the entity relationship diagram.

DB-VA provides you with two ways to create a Class Diagram:

1. Drawing an Entity Relationship Diagram (ERD)
2. Synchronizing from Object Model to Data Model

Drawing an Entity Relationship Diagram

You can create a new ERD in one of the three ways:

• On the menu, click File > New Diagram > Others > Entity Relationship Diagram.

Figure 4.1 - Create an ERD by click on menu

DB-VA Designer’s Guide Chapter 4 – Designing Data Model by Entity Relationship Diagram

4-3

• On the Diagram Navigator, right-click Entity Relationship Diagram > Create Entity Relationship Diagram.

Figure 4.2 - Create ERD by click on Diagram Navigator

• On the toolbar, click the New Entity Relationship Diagram icon.

A new Entity Relationship Diagram pane is displayed.

Adding Entity

1. On the diagram toolbar, click the Entity shape icon.

Figure 4.3 - Create an Entity by using the Entity icon

2. Click a location in the diagram pane.

DB-VA places an icon representing the entity element on the diagram.

3. Type a name for the Entity element.
• You can edit the name by double-clicking the name or by pressing the F2 button.

Modifying Entity Specification

An entity specification displays the entity properties and constraints.

You can display the Entity Specification in one of the two ways:

• Click on an entity class, click the Open Specification resource located at the top-right corner of the entity.

Figure 4.4 - "Open Specification" resource

DB-VA Designer’s Guide Chapter 4 – Designing Data Model by Entity Relationship Diagram

4-4

• Right-click the entity, click Open Specification...from the pop-up menu.

Figure 4.5 - Open specification by click on popup menu

Entity Specification dialog box is displayed, you can modify the entity properties and constraints.

Figure 4.6 - Entity Specification dialog

Adding Column
You can add a new column to the entity in one of the three ways:

• Right-click on an entity, select New Column.

Figure 4.7 - Add column by click on popup menu

A new column is added, type the column name and type in the form of "column_name: type". You can also edit the column
name by double-clicking the column name or by pressing the F2 button.

• Click on an entity, press the keyboard shortcut - Alt + Shift + C.
• Add column in Entity Specification dialog:

1. Right-click the entity element, click Open Specification.
2. Click the Columns tab, then click Add.

DB-VA Designer’s Guide Chapter 4 – Designing Data Model by Entity Relationship Diagram

4-5

Column Specification dialog box is displayed, you can modify the column name and properties, such as
type.

Figure 4.8 - Entity Specification dialog

Modifying Column Specification

To open the Column Specification:

1. Right-click the column, click Open Specification...from the pop-up menu.

Figure 4.9 - To open the column specification

The Column Specification dialog box is displayed, you can modify the column properties.

Figure 4.10 - Column Specification dialog

DB-VA Designer’s Guide Chapter 4 – Designing Data Model by Entity Relationship Diagram

4-6

Adding Relationship
Relationship shows how the entities are related to each other.

You can add a relationship to the entities in one of the two ways:

• Using Resource-Centric Interface
1. Click on an entity, a group of valid editing resources is displayed around the shape.
2. Mouse over the resource, select the desired resource, such as "One-to-One Relationship - > Entity".

Figure 4.11 - "One-to-one Relationship -> Entity" resource

3. Drag the resource to the related entity.

Figure 4.12 - Drag the resource to the related entity

• Using Toolbar icon
1. On the diagram toolbar, click the Relationship icon.

• One-to-One Relationship

• One-to-Many Relationship

• Many-to-Many Relationship
2. Click on an entity and drag to the related entity.

A connector is added between the two entities.

Figure 4.13 - an one-to-one relationship created

DB-VA Designer’s Guide Chapter 4 – Designing Data Model by Entity Relationship Diagram

4-7

Modifying Relationship Specification

The relationship specification displays the relationship properties, such as name, phrase, and cardinality of the related entities.

To open the relationship specification dialog box:

1. Right-click on the connection line, click Open Specification... from the pop-up menu.

Relationship Specification dialog box is displayed, you have to modify the relationship properties, Phrase and
Cardinality.

Figure 4.14 - Relationship Specification dialog

Synchronizing from Object Model to Data Model

DB-VA allows you to generate the ERD from a class diagram by synchronization as if there is a class diagram.

You can synchronize the Class Diagram to ERD in one of the three methods:

• On the menu, click Tools > Object-Relational Mapping (ORM) > Synchronize to Entity Relationship Diagram.

Figure 4.15 - Synchronize to ERD

DB-VA Designer’s Guide Chapter 4 – Designing Data Model by Entity Relationship Diagram

4-8

• Right-click on the class diagram, select Synchronize to Entity Relationship Diagram.

Figure 4.16 - Synchronize to ERD by click on popup menu

• On the class diagram, hold down the right-mouse button, move the mouse from left to right to form the gesture. A
blue path is shown indicating the gesture.

Figure 4.17 - Synchronize to ERD by using Gesture

An entity relationship diagram is generated and can be found under the Diagram Navigator.

Figure 4.18 - The generated ERD

DB-VA Designer’s Guide Chapter 4 – Designing Data Model by Entity Relationship Diagram

4-9

Specifying Primary Key

You can specify the column to be included in the primary key in one of the two ways:

• Specify Primary Key in Entity Specification dialog:
1. Right-click on the entity, click Open Specification... to open the Entity Specification dialog box.
2. Click the Columns tab, check the Primary Key option for the column that will be included in the primary

key.

Figure 4.19 - Entity Specification dialog

• Specify Primary Key in Column Specification dialog:
1. Right-click the column, click Open Specification... to open the Column Specification dialog box.
2. Check the Include in primary key option.

Figure 4.20 - Column Specification dialog

Note

If you assign a primary key to a column of an entity, DB-VA will automatically add a foreign
key column to the related entities.

Figure 4.21 - The foreign key will be added automatically

DB-VA Designer’s Guide Chapter 4 – Designing Data Model by Entity Relationship Diagram

4-10

Specifying Index Column

If a relationship with cardinality of many at one end, a corresponding collection class will be used for handling its multiple
cardinality. DB-VA allows you to specify an index column to sort the collection.

1. Right-click on the connection line, click Open Specification from the pop-up menu.

Figure 4.22 - Open relationship specification

Relationship Specification dialog box is displayed.

2. Check the option for Ordered.
3. Select the index column from the drop-down menu of Index column, click OK .

Figure 4.23 - Select the index column

Note

You can select Create Column from the drop-down menu to create a new index column for
sorting.

DB-VA Designer’s Guide Chapter 4 – Designing Data Model by Entity Relationship Diagram

4-11

Using the ID Generator

As the primary key is unique, DB-VA provides you with the generation of primary key. The ID Generator is specialized for
generating a primary key value at runtime.

1. Right-click on the primary key of an entity, select Open Specification from the pop-up menu.

Figure 4.24 - Open the column specification

Column Specification of the primary key is displayed.

2. Select the ID generator from the drop-down menu of ID Generator, click OK to confirm setting.

Figure 4.25 - Select the ID Generator

Note

If the ID Generator is specified as either sequence, seqhilo or hilo, you have to enter the key for
the sequence/table name.

Defining Discriminator

In generalization, the superclass distributes its commonalities to a group of similar subclasses. The subclass inherits all
superclassï¿½ï¿½s attributes and it may contain specific attributes. DB-VA combines the entities within the hierarchy into one
single entity containing all the attributes and a discriminator column for using table per class hierarchy as the inheritance
strategy. The discriminator contains a unique value which is used for identifying the entity which hierarchy it belongs to.

DB-VA allows you to define the discriminator in the entity and the discriminator value in the classes.

DB-VA Designer’s Guide Chapter 4 – Designing Data Model by Entity Relationship Diagram

4-12

Defining Discriminator Column for Entity

You can add a new column acting as the discriminator column for an entity.

1. Right-click on an entity, select New Column.

Figure 4.26 - Create a column

2. Enter the name and type for the discriminator in the form of "discriminator_name: type".

Figure 4.27 - Enter the column name and data type

3. Right-click on the entity, select Open Specification....

Figure 4.28 - Open the column specification

Entity Specification dialog box is displayed.

4. Select the desired column from the drop-down menu of Discriminator Column , click OK to confirm setting.

Figure 4.29 - Select the Discriminator Column

DB-VA Designer’s Guide Chapter 4 – Designing Data Model by Entity Relationship Diagram

4-13

Defining Discriminator Value for Class

You can specify the discriminator value for each sub-class.

1. Right-click on the relative sub-class for adding discriminator, select ORM > ORM Class Details...from the pop-up
menu. The Class Specification dialog box showing the ORM Class Detail tab is displayed.

Figure 4.30 - Open the ORM Class Detail

2. Enter the discriminator value for identifying the sub-class.

Figure 4.31 - Class Specification dialog (ORM Class Detail Tab)

DB-VA Designer’s Guide Chapter 4 – Designing Data Model by Entity Relationship Diagram

4-14

Creating an Array Table

In a one-to-many relationship, a collection is used for handling the multiple objects such that it is simpler to retrieve each
object from the collection one by one.

DB-VA promotes the idea of Array Table which allows users to retrieve objects in the form of primitive array, instead of a
collection when handling a data column with cardinality of many.

DB-VA allows you to create an array table in the entity and define an array type in the classes.

Defining an Array Table

You can create an Array Table for the Entity with a column containing more than one instance of data.

1. Create a one-to-many relationship between the entity and one of its columns that may contain more than one instance
of data.

Figure 4.32 - Entities with One-to-many relationship

In the above case, the phonebook has a contact entry for each contact person. Each contact person may have more
than one phone numbers. A one-to-many relationship between contact entry and contact phone can be built.

2. Right-click on the entity for the data column with cardinality of many, select Convert to Array Table from the pop-
up menu.

Figure 4.33 - Convert to Array Table

3. A warning message will be displayed, showing that the listed constraints are not satisfied for converting to array table.
Click Yes to let DB-VA to resolve the constraints automatically. Click No to cancel the conversion to array table.

Figure 4.34 - Warning message for no index column

The conversion to Array Table is completed and the entity for the data column is stereotyped as Array Table.

Figure 4.35 - Array Table created

DB-VA Designer’s Guide Chapter 4 – Designing Data Model by Entity Relationship Diagram

4-15

Defining an Array Type for Attribute in Class

A class with an attribute of array type modifier means that the attribute may contain more than one data; thus it implies the idea
of Array Table.

You can define the array type for the attribute in one of the two ways:

• Using Inline Editing
1. Right-click on a class, click Add > Attribute .

Figure 4.36 - Add an attribute by click on popup menu

2. Enter the name and type for the attribute in the form of "attribute_name :type[]", the sign, "[]" indicates
the attribute is an array.

Figure 4.37 - Enter the attribute name and data types

• Using Class Specification dialog box
1. Right-click on a class, click Open Specification.

Figure 4.38 - Open the class specification

• The Class Specification dialog box is displayed

1. Click Attribute Tab, click Add.

Attribute Specification is displayed.

DB-VA Designer’s Guide Chapter 4 – Designing Data Model by Entity Relationship Diagram

4-16

2. Enter attribute name and type, select [] from the drop-down menu of Type modifier, then click OK to
confirm setting.

Figure 4.39 - Select the Type modifier

Creating a Partial Table

In a one-to-one identifying relationship, an entity may be a subordinate of the related entity; that is, the subordinate entity has
columns which also belong to its superior entity in the real world situation.

DB-VA promotes the idea of Split Table with stereotype of Partial which allows developers to optimize the size of database,
and minimizes the redundant persistent classes for handling one-to-one identifying relationship. In order to reduce the risk of
appending a new column to an existing database table, Split table supports developers to add new columns to the partial table
with a one-to-one identifying relationship linked to the existing table.

DB-VA allows you to split the entity into two and convert the subordinate entity to be a Partial Table in a one-to-one
identifying relationship.

Splitting Table

You can split an entity into two associated with a one-to-one identifying relationship.

1. You can activate the Split Table dialog box in one of the two ways:
• Using Pop-up Menu

1. Right-click an entity, select Split Table.

Figure 4.40 - Select "Split Table" in popup menu

DB-VA Designer’s Guide Chapter 4 – Designing Data Model by Entity Relationship Diagram

4-17

• Using Resource-Centric Interface
1. Click on an entity, a group of valid editing resources are displayed around the entity.
2. Click the resource of "One-to-One Relationship - > Partial Table".

Figure 4.41 - Click on "One-to-one Relationship -> Partial Table" resource

2. Split Table dialog box is displayed.

Figure 4.42 - Split Table dialog

3. Edit the New Partial Table Name, select the columns from the list of Original to Partial , and click OK .

An entity stereotyped as <<Partial>> is created.

Figure 4.43 - Partial Table is created

Converting to a Partial Table

You can convert an entity to a Partial Table in a one-to-one identifying relationship.

1. Right-click on the entity, select Convert to Partial Table from the pop-up menu.

Figure 4.44 - Convert to Partial Table

DB-VA Designer’s Guide Chapter 4 – Designing Data Model by Entity Relationship Diagram

4-18

The entity is stereotyped as <<Partial>>.

Figure 4.45 - Converted to a Partial Table

Copying SQL Statements from Tables

DB-VA provides function of copying SQL statements from the ERD entities. It allows the developers to copy the SQL
statements from the entity relationship diagram easily such that developers can use and modify the SQL statement on the
database directly.

In order to copy the SQL statement, you must configure the database setting in advance as DB-VA will generate the SQL
statements according to the default database server type.

1. To configure database connection, on the menu, click Tools > Object-Relational Mapping (ORM) > Database
Configuration....

Figure 4.46 - To open the Database Configuration

Database Configuration dialog box will be displayed. To configure the database, refer to the descriptions of the
Database Configuration section in the Working with DB Visual ARCHITECT chapter for more information.

Note

In DB-VA for IDE, you are allowed to configure the database connection by using Modeling >
ORM > Database Configuration to display the Database Configuration dialog box.

Note

DB-VA will only provide you the function of copying SQL if the default database connection
is set.

Note

If there are multiple database settings, DB-VA will generate SQL statements for all these
database servers.

Example:

There are two database settings selected in the DB-VA environment.

Figure 4.47 - Two database settings Selected

DB-VA Designer’s Guide Chapter 4 – Designing Data Model by Entity Relationship Diagram

4-19

2. Right-click on the ERD, select Generate SQL... from the pop-up menu.

Figure 4.48 - Select generate SQL in popup menu

3. Generate SQL dialog box is displayed, select the database server from the drop-down menu of Database, the
corresponding SQL statements will be displayed accordingly.

Figure 4.49 - Generate SQL dialog

You are allowed to copy the SQL statements from the Generate SQL dialog box.

Note

You can select Create Table(s), Drop Table(s), Select, Insert, Update and Delete from the
Generate SQL dialog to directly copy the SQL statements to clipboard.

DB-VA Designer’s Guide Chapter 4 – Designing Data Model by Entity Relationship Diagram

4-20

Copying SQL Statements from Specified Scope

You can specify the scope on the ERD for DB-VA to generate the SQL statements.

You can specify one of the three scopes:

• All entities on the ERD
1. Click on an entity.
2. On the menu, select Edit > Select All of Same Type.
3. Right-click on the entity, select Generate SQL....

As copying SQL without specifying scope, SQL statements will be generated for all components including both
entities and relationships on the ERD.

Example:

Figure 4.50 - Generate SQL for all entity

Figure 4.51 - The generated SQL for all entities

DB-VA Designer’s Guide Chapter 4 – Designing Data Model by Entity Relationship Diagram

4-21

• Multiple entities and connection lines on the ERD
1. Select several entities and relationships on the ERD, right-click on the diagram pane, select Copy SQL from

the pop-up menu.

As generate SQL with specifying a particular scope, SQL statements will be generated only for the components
included in the specified scope.

Example:

Figure 4.52 - Generate SQL for selected entities

• Connection lines on the ERD
1. Select connection line, right-click on the diagram pane, select Generate SQL... from the pop-up menu.

As Generate SQL... with connection lines, SQL statements for Create Constraint(s) and Drop Constraints(s) will be
generated.

Example:

Figure 4.53 - Generate connection line's constraint

Create
Constraint :

alter table 'OrderLine' add index 'FK_OrderLine_1969'
('PurchaseOrderPO_NO'), add constraint 'FK_OrderLine_1969' foreign key
('PurchaseOrderPO_NO') references 'PurchaseOrder' ('PO_NO');

Drop
Constraint :

alter table 'OrderLine' drop foreign key 'FK_OrderLine_1969';

DB-VA Designer’s Guide Chapter 4 – Designing Data Model by Entity Relationship Diagram

4-22

Reverse Engineering Classes
and Database 5

DB-VA Designer’s Guide Chapter 5 – Reverse Engineering Classes and Database

5-2

Chapter 5 - Reverse Engineering Classes and
Databases

DB Visual ARCHITECT (DB-VA) allows you not only to reverse engineer the existing classes, including Java classes and
Hibernate models into object models, but also to reverse engineer the existing database into data models. This chapter shows
you how to reverse engineer the existing classes and database by the reverse facility and the ORM pane.

In this chapter:

• Introduction
• Reverse Engineering Classes
• Reverse Engineering Database
• Using ORM Pane for Reverse Engineering

Introduction

Apart from generating persistent classes and database, DB-VA also supports reverse engineering the existing classes and
database into object models and data models respectively.

By supporting reverse engineering, object and data models will be generated which assists you in re-designing the application
by visual modeling. The following sections show you how to reverse engineer existing classes and database to object and data
models respectively.

Reverse Engineering Classes

DB-VA allows you to reverse engineer the existing classes, including Java classes and Hibernate models into object models.
The reversed object models are stereotyped with ORM-Persistable. You can thus further model your application with the
reversed models and generate the persistent classes and persistence layer after modification.

Reverse Engineering Java Classes to Object Model

DB-VA allows you to reverse engineer the Java classes into object model with ORM-Persistable stereotyped.

To reverse engineer Java classes:

1. On the menu, click Tools > Object-Relational Mapping (ORM) > Reverse Java Classes....

Figure 5.1 - To reverse Java Classes

DB-VA Designer’s Guide Chapter 5 – Reverse Engineering Classes and Database

5-3

The Reverse Java Classes dialog box is displayed.

Figure 5.2 - Reverse Java Classes dialog

2. Click Add... to select the classpath of the Java classes to be reversed. The classpath can be a folder, zip file or jar file.
After finished selecting the classpath, the classpath is added to the list of Select Classpaths, and the classes identified
from the classpath are shown in the list of Available Classes.

Figure 5.3 - The classes in the selected path are shown in the dialog

DB-VA Designer’s Guide Chapter 5 – Reverse Engineering Classes and Database

5-4

3. Select the desired classes by using the list of buttons between the list of Available Classes and Selected Classes.

Figure 5.4 - Select the classes for reverse

4. Click OK . The selected classes are reverse engineered to class models which can be found under the Model tree.

Figure 5.5 - The reversed classes model show in Model pane

To work on the reversed class models, simply add the reversed models to the class diagram:

1. Create a new class diagram by using the New Class Diagram icon.
2. Select the classes from the Model tree, drag the classes to the newly created class diagram.

Figure 5.6 - Drag the classes to Class Diagram

DB-VA Designer’s Guide Chapter 5 – Reverse Engineering Classes and Database

5-5

The classes are added to the class diagram accordingly. The classes shown on the class diagram are stereotyped as
ORM Persistable; meaning that the Java classes are reversed engineered to ORM Persistable classes supporting the
object relational mapping.

Figure 5.7 - The reversed classes are shown on the Class Diagram

Reverse Engineering Hibernate Model to Object Model

DB-VA not only allows you to reverse engineer the Java classes, but also the hibernate model to object model with ORM-
Persistable stereotyped. DB-VA also reverse engineer the database configuration as the database setting is defined in the
hibernate model.

To reverse engineer Hibernate model:

1. On the menu, click Tools > Object-Relational Mapping (ORM) > Reverse Hibernate....

Figure 5.8 - Reverse Hibernat

The Reverse Hibernate Model dialog box is displayed.

Figure 5.9 - Reverse Hibernate Model dialog

2. Select the path of the Hibernate xml files by using the button.
3. Select the type of reverse engineering to be performed from the drop-down menu of Reverse, either Configuration

and Mapping, Configuration only or Mapping only.

Figure 5.10 - Select the type of reverse engineering

DB-VA Designer’s Guide Chapter 5 – Reverse Engineering Classes and Database

5-6

4. Click OK . The hibernate model are reverse engineered to class models and entities which can be found under the
Model tree.

Figure 5.11 - The reversed model is shown in Model pane

After reverse engineered the hibernate model, you can use an ORM diagram to view the mapping between the reversed classes
and entities. For more information on ORM diagram, refer to the description of Showing Mapping between Object and Data
Models by ORM Diagram section.

1. Create a new ORM diagram by using the New ORM Diagram icon.
2. Add the reversed classes to the ORM diagram by dragging the class models from the Model tree to the ORM diagram.

Figure 5.12 - Drag the Class Model to ORM Diagram

3. Drag the entities from the Model tree to the ORM diagram to add the entities to the ORM diagram.

Figure 5.13 - Drag the entities to ORM Diagram

DB-VA Designer’s Guide Chapter 5 – Reverse Engineering Classes and Database

5-7

4. Right-click the ORM diagram, select View > Attribute Mapping from the pop-up menu.

Figure 5.14 - Switch to Attribute mapping view

The mapping between the attributes of class models and columns of entities are shown.

Figure 5.15 - ORM Diagram in attribute mapping view

You can also check the reversed engineered database connection by the following steps:

1. Click the Database Configuration icon, to open the Database Configuration dialog box.

Figure 5.16 - Database Configuration dialog

DB-VA Designer’s Guide Chapter 5 – Reverse Engineering Classes and Database

5-8

2. Select the connected database from the Database Configuration dialog box, the Database Setting is shown which
shows the database configuration has been reversed successfully.

Figure 5.17 - The database configuration reversed successfully

Using ORM Pane

DB-VA provides you an ORM pane to generate persistent model and entity from an existing object model in Java classes and
database respectively. Using the ORM pane, the existing object model and database will be transformed to ORM-Persistable
class and entity; you can further develop the ORM-Persistable classes and entities by adding the desired classes and entities to
the class diagram and entity relationship diagram respectively.

The ORM pane provides two views, including Class View and Database View. The class view allows you to transform the
existing object model to class model while the database view allows you to transform the existing database to entity.

Figure 5.18 - ORM Pane

Reverse Engineering Java Classes by Class View
As the class view of the ORM pane supports the transformation of the existing object model into ORM-Persistable class, you
are allowed to further your development based on the transformed object model.

1. Select the Class View of the ORM pane.
2. Click the Classpath Configuration icon.

Figure 5.19 - To open the classpath configuration

DB-VA Designer’s Guide Chapter 5 – Reverse Engineering Classes and Database

5-9

The Select Classpaths dialog box is displayed.

Figure 5.20 - Select Classpaths dialog

3. Click Add... button to select the desired classpath.

Figure 5.21 - Added classpath to the dialog

All the available classes found from the specified classpath(s) are transformed and shown on the ORM pane.

Figure 5.22 - The classes in the classpath will shown in ORM pane

4. Create a new class diagram by using the New Class Diagram icon.
5. Select the desired classes and drag to the class diagram.

Figure 5.23 - Drag the classes to Class Diagram

DB-VA Designer’s Guide Chapter 5 – Reverse Engineering Classes and Database

5-10

The classes are added to the class diagram such that you can further develop the model by using the visual modeling
feature.

Figure 5.24 - The reversed classes shown in Class Diagram

Reverse Engineering Relational Database

DB-VA supports reverse engineering the existing database to data models. As DB-VA automates object-relational mapping,
object model can thus be generated from the data model reverse engineered from the existing database.

Using Reverse Database Facility

You can create an Entity Relationship Diagram by reverse engineering an existing relational database.

• On the menu, click Tools > Object-Relational Mapping (ORM) > Reverse Database....

Figure 5.25 - Reverse Database

The Database to Data Model dialog box is displayed.

DB-VA Designer’s Guide Chapter 5 – Reverse Engineering Classes and Database

5-11

Step 1: Select Language
Select the language of the project from the drop-down menu, either Java, C#, PHP or Enterprise Object Framework, and
then click Next > to proceed to Step 2.

Figure 5.26 - Select the language of the project

Step 2: Database Configuration
You can configure the database connection for the desired database to be reversed.

1. You are asked to define the database configuration. To configure the database settings, refer to the descriptions of the
Database Configuration section in the Working with DB Visual ARCHITECT chapter.

Figure 5.27 - Database Configuration

2. Click Next>, go to Step 3 of Reverse Database.

DB-VA Designer’s Guide Chapter 5 – Reverse Engineering Classes and Database

5-12

Step 3: Selecting Tables
All the available tables found from the connected database are listed.

1. Select the tables that you want to reverse to Data Model.
2. Click Finish.

Figure 5.28 - The available tables in the database

An Entity Relationship Diagram is automatically generated and displayed. It can be found under the Diagram Navigator.

Figure 5.29 - The reversed ERD

Using ORM Pane

DB-VA provides you an ORM pane to generate persistent model and entity from an existing object model in Java classes and
database respectively. Using the ORM pane, the existing object model and database will be transformed to ORM-Persistable
class and entity; you can further develop the ORM-Persistable classes and entities by adding the desired classes and entities to
the class diagram and entity relationship diagram respectively.

The ORM pane provides two views, including Class View and Database View. The class view allows you to transform the
existing object model to class model while the database view allows you to transform the existing database to entity.

Figure 5.30 - ORM Pane

DB-VA Designer’s Guide Chapter 5 – Reverse Engineering Classes and Database

5-13

Reverse Engineering Database by Database View
As the database view of the ORM pane supports the transformation of the existing database into entity, you are allowed to alter
the database schema by modeling with the entity relationship diagram and exporting to the existing database.

1. Select the Database View of the ORM pane.

Figure 5.31 - Switch to Database View

2. Click the Database Configuration icon.

Figure 5.32 - To open the Database Configuration

The Database Configuration dialog box is displayed.

Figure 5.33 - Database Configuration dialog

3. Configure the database connection by using the Database Configuration dialog box, refer to the descriptions of the
Database Configuration section in the Working with DB Visual ARCHITECT chapter for more information. If the
database is successfully connected, the tables of the connected database are transformed into entities and shown on the
ORM pane.

Figure 5.34 - The reversed entity shown in ORM Pane

DB-VA Designer’s Guide Chapter 5 – Reverse Engineering Classes and Database

5-14

4. Create a new entity relationship diagram by using the New Entity Relationship Diagram icon.
5. Select the desired entities from the ORM pane, drag to the entity relationship diagram.

Figure 5.35 - Drag the entities to ERD

The selected entities are added to the class diagram allowing you alter the database schema by visual modeling.

Mapping Object Model to Data
Model and vice versa 6

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-2

Chapter 6 - Mapping Object Model to Data Model
and vice versa

Being an Object-Relational Mapping tool, DB Visual ARCHITECT (DB-VA) automates the mapping between object and data
models. This chapter describes how DB-VA maps the object model to data model and vise versa, and introduces the usage of
ORM diagram.

In this chapter:

• Introduction
• Mapping Object Model to Data Model
• Mapping Data Model to Object Model
• Showing Mapping by ORM Diagram

Introduction

DB Visual ARCHITECT (DB-VA) supports Object Relational Mapping (ORM) which maps object models to entity relational
models and vice versa.

DB-VA helps mapping between Java objects to relational database. It not only preserves the data, but also the state,
foreign/primary key mapping, difference in data type and business logic. Thus, you are not required to handle those tedious
tasks during software development.

Mapping Object Model to Data Model

This section shows you how DB-VA maps object models to data model.

Mapping Classes to Entities

Object Model can map to Data Model due to the persistent nature of classes. Persistent classes can act as persistent data storage
during the application is running. Hence, all persistent classes can map to entities using a one-to-one mapping.

Example:

Figure 6.1 - Mapping Classes to Entities

In the above example, the Customer Class is mapped with the Customer Entity as the Customer instance can store the customer
information from the Customer Entity.

Mapping Attributes to Columns

Since the persistent classes map to the entities, persistent attributes map to columns accordingly. DB-VA ignores all non-
persistent attributes such as derived values.

Example:

Figure 6.2 - Mapping Attributes to Columns

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-3

In the above example, the following table shows the mapping between the attributes of the Customer Class and the columns of
the Customer Entity.

Customer Class Customer Entity

CustomerID CustomerID

CustomerName CustomerName

Address Address

ContactPhone ContactPhone

Email Email

Table 6.1

Mapping Data Type

DB-VA automatically maps the persistent attribute type to an appropriate column data type of the database you desired.

Example:

Figure 6.3 - Mapping Data Type

In the above example, the following table shows the mapping between data types

Customer Class Customer Entity

int int (10)

String varchar(255)

Table6.2

A table shows the data type mapping between object model and data model.

Object Model Data Model

Boolean Bit (1)

Byte Tinyint (3)

Byte[] Binary(1000)

Blob Blob

Char Char(1)

Character Char(1)

String varchar(255)

Int Integer(10)

Integer Integer(10)

Double Double(10)

Decimal Integer

Bigdecimal Decimal(19)

Float Float(10)

Long Bigint(19)

Short Smallint(5)

Date Date

Time Time(7)

Timestamp Timestamp(7)

Table 6.3

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-4

Mapping Primary Key

You can map an attribute to a primary key column. When you synchronize the ORM-Persistable Class to the ERD, you will be
prompted by a dialog box to select primary key.

• You can select an attribute as the primary key.
• You can let DB-VA generate the primary key automatically.

Example:

Figure 6.4 - Sync to Entity Relationship Diagram dialog

In the above example, when synchronizing the class of Product to entity relationship diagram, the above dialog box is shown to
prompt you to select the primary key of the Product class.

Under the drop-down menu, you can select either one of the attributes of the Product class to be the primary key, or assign DB-
VA to generate the primary key automatically, or select "Do Not Generate" to leave the generated entity without primary key.

Figure 6.5 - Different between specify a primary key and auto generated

The above diagram shows if you assign ProductID as primary key, the ProductID of the generated entity, Product will become
bold; whereas if you select "Auto Generate" for the primary key, DB-VA generates an additional attribute ID as the primary
key of the Product entity.

Mapping Association

Association represents a binary relationship among classes. Each class of an association has a role. A role name is attached at
the end of an association line. DB-VA maps the role name to a phrase of relationship in the data model.

Mapping Aggregation

Aggregation is a stronger form of association. It represents the "has-a" or "part-of" relationship.

Example:

Figure 6.6 - Mapping Aggregation

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-5

In the above example, it shows that a company consists of one or more department while a department is a part of the
company.

Note

You have to give the role names, "ConsistsOf" and "is Part Of" to the classes, Company and Department in
the association respectively in order to proceed to the generation of code.

Mapping Composite Aggregation

Composite aggregation implies exclusive ownership of the "part-of" classes by the "whole" class. It means that parts may be
created after a composite is created, meanwhile such parts will be explicitly removed before the destruction of the composite.

Example:

Figure 6.7 - Mapping Composite Aggregation

In the above example, DB-VA performs the Primary/Foreign Key Column Mapping automatically. StudentID of the student
entity is added to the entity, EmergencyContact as primary and foreign key column.

Mapping Multiplicity

Multiplicity refers to the number of objects associated with a given object. There are six types of multiplicity commonly found
in the association. The following table shows the syntax to express the Multiplicity.

Table shows the syntax expressing the Multiplicity

Type of Multiplicity Description

0 Zero instance

0..1 Zero or one instances

0..* Zero or more instances

1 Exactly one instance

1..* One or more instances

* Unlimited number of instances

Table 6.4

Example:

Figure 6.8 - Mapping Multiplicity

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-6

In the above example, it shows that a parent directory (role: host) contains zero or more subdirectories (role: accommodated
by).

When DB-VA transforms a class with multiplicity of zero, the foreign key of parent entity can be nullable in the child entity. It
is illustrated by the DirectoryID.

Figure 6.9 - Column Specification of the foreign key

Table shows the typical mapping between Class Diagram and Entity Relationship Diagram.

Class Diagram Entity Relationship Diagram

Table 6.5

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-7

Mapping Many-to-Many Association

For a many-to-many association between two classes, DB-VA will generate a Link Entity to form two one-to-many
relationships in-between two generated entities. The primary keys of the two entities will migrate to the link entity as the
primary/foreign keys.

Example:

Figure 6.10 - Mapping Many-to-Many Association

In the above example, DB-VA generates the link entity, Student_Course between entities of Student and Course when
transforming the many-to-many association.

Mapping Inheritance/Generalization

Generalization distributes the commonalities from the superclass among a group of similar subclasses. The subclass inherits all
the superclass's attributes and it may contain specific attributes.

DB-VA provides two strategies for transforming the generalization hierarchy to relational model. The two strategies for
transformation are table per class hierarchy and table per subclass.

Using Table per Class Hierarchy Strategy
Transforming generalization hierarchy to relational model with the table per class hierarchy strategy, DB-VA not only
combines all the classes within the hierarchy into one single entity containing all the attributes, but also generates a
discriminator column to the entity. The discriminator is a unique value identifying the entity which hierarchy it belongs to.

By using the table per class hierarchy strategy, the time used for reading and writing objects can be saved. However, more
memory is used for storing data. It is useful if the class will be loaded frequently.

Example:

Figure 6.11 - Mapping Inheritance/Generalization using Table per Class Hierarchy Strategy

In the above example, it shows how DB-VA transforms the generalization with CheckingAccount, SavingsAccount and their
superclass, BankAccount applying the table per class hierarchy strategy.

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-8

Using Table per Subclass Strategy
When DB-VA transforms a generalization hierarchy using the table per subclass strategy to relational model, each subclass will
be transformed to an entity with a one-to-one identifying relationship with the entity of the superclass.

By using the table per subclass strategy, it can save memory for storing data. However, it takes time for reading and writing an
object among several tables which slows down the speed for accessing the database. It is useful if the class, which contains a
large amount of data, is not used frequently.

Example:

Figure 6.12 - Mapping Inheritance/Generalization using Table per Subclass Strategy

In the above example, it shows how DB-VA transforms the generalization which applies the table per subclass hierarchy
strategy to the CheckingAccount and SavingsAccount.

Using Mixed Strategies
DB-VA allows applying the two inheritance strategies to different subclasses within a generalization hierarchy in Java project.
By applying different strategies to different subclasses within a generalization hierarchy, DB-VA transforms the generalization
hierarchy with respect to the specified inheritance strategies.

Example:

Figure 6.13 - Using Mixed Strategies

Applying the above inheritance strategy to the generalization with the ChequePayment and CreditCardPayment and their
superclass, Payment, DB-VA transforms it into two entities as shown below.

Figure 6.14 - Mapping with mixed Strategies

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-9

In the above example, it shows that applying table per hierarchy inheritance strategy will result in combining the attributes of
the superclass and subclass into one single entity while table per subclass will result in forming an entity of subclass and a one-
to-one identifying relationship between entities of superclass and subclass.

Note

Applying two inheritance strategies to different subclasses within a generalization hierarchy is only
available in Java project. If mixed strategies are applied to the generalization hierarchy in .NET project, it
will result in error when the generation of code and database.

Mapping Collection of Objects to Array Table

For a persistent class acting as persistent data storage, it may consist of a persistent data containing a collection of objects. DB-
VA promotes the use of Array Table to allow users retrieve objects in the form of primitive array.

When DB-VA transforms a class with an attribute of array type modifier, this attribute will be converted to an Array Table
automatically. The generated entity and the array table form a one-to-many relationship.

Example:

Figure 6.15 - Mapping Collection of Objects to Array Table

In the above example, the phonebook has a contact entry for each contact person. Each contact person may have more than one
phone numbers. In order to ease the retrieval of a collection of phone objects, DB-VA converts the phone attribute into a
ContactEntry_Phone array table.

Mapping Object Model Terminology

Table shows the shift from object model to data model terminology.

Object Model Term Data Model Term

Class Entity

Object Instance of an entity

Association Relationship

Generalization Supertype/subtype

Attribute Column

Role Phrase

Multiplicity Cardinality

Table 6.6

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-10

Mapping Data Model to Object Model

This section shows you how DB-VA maps the data model to object model.

Mapping Entities to Classes

All entities map one-to-one to persistent classes in an object model.

Example:

Figure 6.16 - Mapping Entities to Classes

In the above example, the Customer Entity map one-to-one the Customer Class as the Customer instance can store the
customer information from the Customer Entity.

Mapping Columns to Attributes

Since all entities map one-to-one to persistent classes in an object model, columns in turn map to attributes in a one-to-one
mapping. DB-VA ignores all specialty columns such as computed columns and foreign key columns.

Example:

Figure 6.17 - Mapping Columns to Attributes

In the above example, the following table shows the mapping between the columns of the Customer Entity and the attributes of
the Customer Class.

Customer Entity Customer Class

CustomerID CustomerID

CustomerName CustomerName

Address Address

ContactPhone ContactPhone

Email Email

Table 6.7

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-11

Mapping Data Type

DB-VA automatically maps the column data type to an appropriate attribute type of object model.

Example:

Figure 6.18 - Mapping Data Type

In the above example, the following table shows the mapping between data types

Customer Entity Customer Class

int (10) int

varchar(255) String

Table 6.8

A table shows the data type mapping between Object model and Data model.

Data Model Object Model

Bigint Long

Binary Byte[]

Bit Boolean

Blob Blob

Varchar String

Char Character

Char(1) Character

Clob String

Date Date

Decimal BigDecimal

Double Double

Float Float

Integer Integer

Numeric BigDecimal

Real Float

Time Time

Timestamp Timestamp

Tinyint Byte

Smallint Short

Varbinary Byte[]

Table 6.9

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-12

Mapping Primary Key

As the columns map to attributes in a one-to-one mapping, primary key columns in the entity map to attributes as a part of a
class.

Example:

Figure 6.19 - Mapping Primary Key

In the example, the primary key of entity Product, ProductID maps to an attribute ProductID of the class Product.

Mapping Relationship

Relationship represents the correlation among entities. Each entity of a relationship has a role, called Phrase describing how the
entity acts in it. The phrase is attached at the end of a relationship connection line. DB-VA maps the phrase to role name of
association in the object model.

There are two types of relationships in data model mapping to object model - identifying and non-identifying.

Identifying relationship specifies the part-of-whole relationship. It means that the child instance cannot exist without the parent
instance. Once the parent instance is destroyed, the child instance becomes meaningless.

Non-identifying relationship implies weak dependency relationship between parent and child entities. There are two kinds of
non-identifying relationships, including optional and mandatory. The necessity of the parent entity is "exactly one" and "zero
or one" in the mandatory and optional non-identifying relationship respectively.

Mapping Identifying Relationship
Since the identifying relationship specifies the part-of-whole relationship, it maps to composite aggregations which implies that
the part cannot exist without its corresponding whole.

Example:

Figure 6.20 - Mapping Identifying Relationship

In the above example, DB-VA maps the identifying relationship between the entities of EmergencyContact and Student to
composition aggregation.

Mapping Non-identifying Relationship
Since non-identifying relationship implies weak relationship between entities, DB-VA maps it to association.

Example:

Figure 6.21 - Mapping Non-identifying Relationship

In the above example, non-identifying relationship between entities Owner and Property maps to association between Classes
of Owner and Property.

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-13

Mapping Cardinality

Cardinality refers to the number of possible instances of an entity relate to one instance of another entity. The following table
shows the syntax to express the Cardinality.

Table shows the syntax expressing the Cardinality

Type of Cardinality Description

 Zero or one instance

 Zero or more instances

 Exactly one instance

 One or more instances

Table 6.10

Table shows the typical mapping between Entity Relationship Diagram and Class Diagram.

Entity Relationship Diagram Class Diagram

Table 6.11

Mapping Many-to-Many Relationship

For each many-to-many relationship between entities, DB-VA generates a Link Entity to form two one-to-many relationships
in between. The primary keys of the two entities will automatically migrate to the link entity to form the primary/foreign keys.

Example:

Figure 6.22 - Mapping Many-to-Many Relationship

In the above example, DB-VA generates the link entity once a many-to-many relationship is setup between two entities. To
transform the many-to-many relationship, DB-VA maps the many-to-many relationship to many-to-many association.

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-14

Mapping Array Table to Collection of Objects

DB-VA promotes the use of Array Table to allow users retrieve objects in the form of primitive array.

When DB-VA transforms an array table, the array table will map to an attribute with array type modifier.

Example:

Figure 6.23 - Mapping Array Table to Collection of Objects

In the above example, the phonebook has a contact entry for each contact person. Each contact person may have more than one
phone numbers. The array table of ContactEntry_Phone maps into the phone attribute with array type modifier in the
ContactEntry class.

Mapping Data Model Terminology

The following table shows the shift from data model to object model terminology.

Data Model Term Object Model Term

Entity Class

Instance of an entity Object

Relationship Association

Supertype/subtype Generalization

Column Attribute

Phrase Role

Cardinality Multiplicity

Table 6.12

Showing Mapping by ORM Diagram

In order to identify the mapping between the object and data models clearly, DB-VA provides you an ORM diagram to show
the mappings between the ORM-Persistable class and its corresponding entity.

As DB-VA allows you to name the ORM-Persistable class and its corresponding entity differently, and also the attributes and
columns as well, you may find it difficult to identify the mappings not only between the ORM-Persistable classes and the
corresponding entities, but also the attributes and columns. Taking the advantage of ORM diagram, the mappings between
ORM-Persistable classes and entities and between attributes and columns can be clearly identified.

DB-VA provides you two ways to create the ORM diagram for showing the mapping between the object and data models:

1. Creating an ORM diagram from the existing class diagram and/or ERD.
2. Drawing an ORM Diagram

Creating an ORM Diagram from Existing Diagrams

The following example shows you how to show the mapping between the existing object and data models by the ORM
diagram.

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-15

Let us assume the following class diagram has been created and synchronized to the entity relationship diagram (ERD).

Class Diagram Synchronized ERD

Table 6.13

You can create an ORM diagram by either the object model, data model, or both. The following steps show you how to create
the ORM diagram by using the object model.

1. Right-click on the class diagram, select Send to > ORM Diagram > New ORM Diagram from the pop-up menu.

Figure 6.24 - Send to a blank new ORM Diagram

A new ORM diagram is created which displays the ORM-Persistable classes.

Figure 6.25 - The classes in ORM Diagram

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-16

Note

Alternatively, you can create the ORM diagram from the data model by right-clicking on the
ERD, and selecting Send to > ORM Diagram > New ORM Diagram from the pop-up menu.

2. Mouse over the ORM Persistable class, click the Class-Entity Mapping - > Entity resource.

Figure 6.26 - "Class-Entity Mapping - > Entity" resource

3. Drag the resource on the ORM diagram to show the corresponding entity associated in the mapping.

Figure 6.27 - Drag the resource to the diagram

A class-to-entity mapping is shown on the diagram.

Figure 6.28 - The Mapping Entity will be created

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-17

4. By repeating steps 2 and 3, all class-to-entity mappings for all classes can be shown.

Figure 6.29 - Mapping entities for all classes

Note

If you have created the ORM diagram from the data model, you can show the class-to-entity
mapping by dragging the Class-Entity Mapping - > Class resource.

Figure 6.30 - "Class-Entity Mapping - > Class" resource on Entity

Drawing an ORM Diagram

You can create a new ORM diagram in one of the three ways:

• On the menu, click File > New Diagram > Others > ORM Diagram.

Figure 6.31 - Create an ORM Diagram

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-18

• On the Diagram Navigator, right-click ORM Diagram > Create ORM Diagram.

Figure 6.32 - Create ORM Diagram on Diagram Navigator

• On the toolbar, click the New ORM Diagram icon.

A new ORM diagram is displayed.

Creating ORM-Persistable Class and Mapping Entity to the ORM Diagram
After created a new ORM diagram, you can create ORM-Persistable class and its mapping entity on the ORM diagram.

To create an ORM-Persistable class on ORM diagram:

1. On the diagram toolbar, click ORM-Persistable Class shape icon.

Figure 6.33 - ORM Persistable Class icon

2. Click a location in the diagram pane.

DB-VA places a class shape icon which is marked with <<ORM-Persistable>> on the diagram.

3. Type the name for the ORM-Persistable Class.
• You can edit the name by double-clicking the name or by pressing the F2 button.

Figure 6.34 - ORM Persistable Class

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-19

Creating Associated ORM-Persistable Class to the ORM Diagram
You can create an associated ORM-Persistable class by using the association resources of an ORM-Persistable class.

1. Mouse over the ORM-Persistable class, drag the One-to-One Association - > Class resource to the diagram to create
another ORM-Persistable class with a one-to-one directional association.

Figure 6.35 - "One-to-One Association - > Class" resource

2. Enter the name to the newly created class.

Figure 6.36 - An ORM Persistable Class are created

Creating Mapping Entity to the ORM Diagram
To create the mapping entity of the ORM-Persistable class:

1. Mouse over the ORM-Persistable class, click and drag the Class-Entity Mapping - > Entity resource to the diagram.

Figure 6.37 - "Class-Entity Mapping - > Entity" resource

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-20

The corresponding mapping entity, Student is created automatically.

Figure 6.38 - Mapping Entity are created

2. Create the mapping entity of Profile class by using the Class-Entity Mapping - > Entity resource.

Figure 6.39 - Mapping Entities for the Classes

Note

You can create the Entity and the mapping ORM-Persistable class using the same approach of
Creating ORM-Persistable Class and Mapping Entity by using the Entity icon on the diagram
toolbar and the Class-Entity Mapping - > Class resource.

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-21

Showing Attribute Mapping

The object-relational mapping exists not only between the ORM-Persistable class and entity, but also the attributes and
columns. You can investigate the mapping between the attributes and columns by using the Attribute Mapping feature.

To view the attribute mapping:

1. Right-click on the ORM diagram, select View > Attribute Mapping from the pop-up menu.

Figure 6.40 - Switch to Attribute Mapping view

The class-to-entity mapping shown on the ORM diagram is changed to attribute-to-column mapping automatically.

Figure 6.41 - ORM Diagram in Attribute Mapping view

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-22

Supporting Real-time Synchronization

ORM diagram supports real-time synchronization; that is, any change in the class diagram, entity relationship diagram and/or
ORM diagram will automatically synchronize to each other.

Let us take the ORM diagram created in the Drawing ORM Diagram section as an example to modify the ORM-Persistable
Class and Entity.

Forming a Class Diagram
You can create a class diagram from the existing models.

1. Create a new class diagram by using New Class Diagram icon.
2. Select the classes from the Class Repository, drag to the newly created class diagram.

Figure 6.42 - Drag the classes from Class Repository

The following class diagram is created.

Figure 6.43 - Class Diagram form by the model in Class Repository

Modifying ORM-Persistable Class
You can modify the ORM-Persistable class such as renaming the class name and adding attributes to the class.

1. Right-click the Student class, select Add > Attribute from the pop-up menu.

Figure 6.44 - Add an attribute in Class

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-23

An attribute is added to the Student class, and the mapping attribute is added to the mapping Student entity
automatically.

Figure 6.45 - The column will added automatically

2. Enter "StudentID : String" to the attribute of Student by double-clicking on the attribute. The type of the mapping
column is mapped to varchar(255) automatically.

Figure 6.46 - The column will update when the mapping attribute modified

Modifying Entity
You can modify the entity such as renaming the entity name and adding columns to the entity.

1. Rename the column of Student entity from attribute to ID by double-clicking on it.

Figure 6.47 - Rename the column name and select not update to attrbiute

2. Right-click the Student entity, select New Column from the pop-up menu.

Figure 6.48 - Add a column to an Entity

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-24

A new column is added to the Student entity and the corresponding attribute is added to the Student ORM-Persistable
class automatically.

Figure 6.49 - Attribute will be added automatically

3. Enter "Name : varchar(255)" to the column by double-clicking on it. The type of the mapping attribute is mapped to
String automatically.

Figure 6.50 - Rename the column and data type

4. Double-click the column attribute of the Student class, rename from column to Name.

Figure 6.51 - The attribute changed

5. Modify the classes and entities on the ORM diagram as shown below:

Figure 6.52 - Modify the Class in ORM Diagram

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-25

6. Navigate to the class diagram, the class diagram is updated automatically.

Figure 6.53 - The classes in Class Diagram is updated automatically

Switching the View of Mapping

As ORM diagram provides two views of mapping, including the mapping between ORM-Persistable class and entity (called
Class Mapping), and the mapping between attributes and columns (called Attribute Mapping).

To change the view of mapping, right-click on the ORM-diagram, select the desired view from the sub-menu of View.

Figure 6.54 - Switch to Attribute mapping view

By selecting the View > Attribute Mapping from the pop-up menu, The class-to-entity mapping shown on the ORM diagram
is changed to attribute-to-column mapping automatically.

Figure 6.55 - The ORM Diagram in Attribute Mapping

DB-VA Designer’s Guide Chapter 6 – Mapping Object Model to Data Model and vice versa

6-26

