

Programmer’s Guide for .NET

0-3

DB Visual ARCHITECT 4.0 Programmer's Guide for .NET

The software and documentation are furnished under the DB Visual ARCHITECT license agreement and may be used only in
accordance with the terms of the agreement.

Copyright Information
Copyright © 1999-2007 by Visual Paradigm. All rights reserved.

The material made available by Visual Paradigm in this document is protected under the laws and various international laws
and treaties. No portion of this document or the material contained on it may be reproduced in any form or by any means
without prior written permission from Visual Paradigm.

Every effort has been made to ensure the accuracy of this document. However, Visual Paradigm makes no warranties with
respect to this documentation and disclaims any implied warranties of merchantability and fitness for a particular purpose. The
information in this document is subject to change without notice.

All examples with names, company names, or companies that appear in this document are imaginary and do not refer to, or
portray, in name or substance, any actual names, companies, entities, or institutions. Any resemblance to any real person,
company, entity, or institution is purely coincidental.

Trademark Information

DB Visual ARCHITECT is registered trademark of Visual Paradigm.
Sun, Sun ONE, Java, Java2, J2EE and EJB, NetBeans are all registered trademarks of Sun Microsystems, Inc.
Eclipse is registered trademark of Eclipse.
JBuilder is registered trademark of Borland Corporation.
IntelliJ and IntelliJ IDEA are registered trademarks of JetBrains.
Microsoft, Windows, Windows NT, Visio, and the Windows logo are trademarks or registered trademarks of Microsoft
Corporation.
Oracle is a registered trademark, and JDeveloper is a trademark or registered trademark of Oracle Corporation.
BEA is registered trademarks of BEA Systems, Inc.
BEA WebLogic Workshop is trademark of BEA Systems, Inc.
Rational Rose is registered trademark of International Business Machines Corporation.
WinZip is a registered trademark of WinZip Computing, Inc.
Other trademarks or service marks referenced herein are property of their respective owners.

DB Visual ARCHITECT License Agreement

THE USE OF THE SOFTWARE LICENSED TO YOU IS SUBJECT TO THE TERMS AND CONDITIONS OF THIS
SOFTWARE LICENSE AGREEMENT. BY INSTALLING, COPYING, OR OTHERWISE USING THE SOFTWARE, YOU
ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT, AND AGREE TO BE BOUNDED
BY ALL OF THE TERMS AND CONDITIONS OF THIS SOFTWARE LICENSE AGREEMENT.

1. Limited License Grant. Visual Paradigm grants to you ("the Licensee") a personal, non-exclusive, non-transferable,
limited, perpetual, revocable license to install and use Visual Paradigm Products ("the Software" or "the Product").
The Licensee must not re-distribute the Software in whole or in part, either separately or included with a product.

2. Restrictions. The Software is confidential copyrighted information of Visual Paradigm, and Visual Paradigm and/or
its licensors retain title to all copies. The Licensee shall not modify, adapt, decompile, disassemble, decrypt, extract,
or otherwise reverse engineer the Software. Software may not be leased, rented, transferred, distributed, assigned, or
sublicensed, in whole or in part. The Software contains valuable trade secrets. The Licensee promises not to extract
any information or concepts from it as part of an effort to compete with the licensor, nor to assist anyone else in such
an effort. The Licensee agrees not to remove, modify, delete or destroy any proprietary right notices of Visual
Paradigm and its licensors, including copyright notices, in the Software.

3. Disclaimer of Warranty. The software and documentation are provided "AS IS," WITH NO WARRANTIES
WHATSOEVER. ALL EXPRESS OR IMPLIED REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR
NON-INFRINGEMENT, ARE HEREBY EXCLUDED. THE ENTIRE RISK AS TO SATISFACTORY QUALITY,
PERFORMANCE, ACCURACY AND EFFORT IS WITH THE LICENSEE. THERE IS NO WARRANTY THE
DOCUMENTATION, Visual Paradigm's EFFORTS OR THE LICENSED SOFTWARE WILL FULFILL ANY OF
LICENSEE'S PARTICULAR PURPOSES OR NEEDS. IF THESE WARRANTIES ARE UNENFORCEABLE
UNDER APPLICABLE LAW, THEN Visual Paradigm DISCLAIMS SUCH WARRANTIES TO THE MAXIMUM
EXTENT PERMITTED BY SUCH APPLICABLE LAW.

4. Limitation of Liability. Visual Paradigm AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY
DAMAGES SUFFERED BY THE LICENSEE OR ANY THIRD PARTY AS A RESULT OF USING OR
DISTRIBUTING SOFTWARE. IN NO EVENT WILL Visual Paradigm OR ITS LICENSORS BE LIABLE FOR
ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, EXEMPLARY, SPECIAL,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE,
EVEN IF Visual Paradigm HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Programmer’s Guide for .NET

0-4

5. Termination. The Licensee may terminate this License at any time by destroying all copies of Software. Visual
Paradigm will not be obligated to refund any License Fees, if any, paid by the Licensee for such termination. This
License will terminate immediately without notice from Visual Paradigm if the Licensee fails to comply with any
provision of this License. Upon such termination, the Licensee must destroy all copies of the Software. Visual
Paradigm reserves all rights to terminate this License.

SPECIFIC DISCLAIMER FOR HIGH-RISK ACTIVITIES. The SOFTWARE is not designed or intended for use in high-
risk activities including, without restricting the generality of the foregoing, on-line control of aircraft, air traffic, aircraft
navigation or aircraft communications; or in the design, construction, operation or maintenance of any nuclear facility. Visual
Paradigm disclaims any express or implied warranty of fitness for such purposes or any other purposes.

NOTICE. The Product is not intended for personal, family or household use; rather, it is intended exclusively for professional
use. Its utilization requires skills that differ from those needed to use consumer software products such as word processing or
spreadsheet software.

GOVERNMENT RIGHTS. If the Software is licensed by or on behalf of a unit or agency of any government, the Licensee
agrees that the Software is "commercial computer software", "commercial computer software documentation" or similar terms
and that, in the absence of a written agreement to the contrary, the Licensee's rights with respect to the Software are limited by
the terms of this Agreement.

Acknowledgements

This Product includes software developed by the Apache Software Foundation (http://www.apache.org). Copyright © 1999
The Apache Software Foundation. All rights reserved.

Programmer’s Guide for .NET

0-5

Table of Contents

Chapter 1 - Generating C# .NET, Database and Persistent Library
Introduction .. 1 -2
Configuring Database... 1 -3
Generating Database... 1 -5
Generating C# .NET Code ... 1 -8

Chapter 2 - Configuring Source and Library in Visual Studio .NET 2003
Copying Generated Source and Library to Visual Studio .NET Project .. 2 -2
Adding Reference of an Existing Project to DB-VA Generated C# Project .. 2 -4
Testing the Visual Studio .NET Project ... 2 -9

Chapter 3 - Developing ASP.NET Application
Introduction .. 3 -2
Creating Object and Saving to Database .. 3 -3
Querying Object from Database... 3 -5
Updating Object and Saving to Database ... 3 -7
Deleting Object in Database... 3 -8

Chapter 4 - Developing Standalone .NET Application
Introduction .. 4 -2
Using the PersistentManager.. 4 -3
Creating Object and Saving to Database .. 4 -4
Querying Object from Database... 4 -6
Updating Object and Saving to Database ... 4 -7
Deleting Object in Database... 4 -9

Chapter 5 - Querying Database
Introduction .. 5 -2
Creating Test Data.. 5 -2
Using ORM Qualifier ... 5 -4

Defining ORM Qualifier... 5 -4
Retrieving From ORM Qualifier ..5 -5

Using Criteria ... 5 -6
Configuring Criteria Class Generation ... 5 -6
Description of Criteria Class... 5 -7
Comparing Criteria Class and SQL Query ... 5 -10

Chapter 6 - Generating Object-Oriented .NET Source from Relational Database
Introduction .. 6 -2
Creating Sample Data... 6 -2
Generating Code from Database Wizard.. 6 -4
Configuring Database... 6 -5
Selecting Table... 6 -6
Configuring Generated Class Details ... 6 -7
Specifying Code Generation Details .. 6 -9
Using the Generated Sample .. 6 -11

Chapter 7 - Programming in VB.NET
Introduction .. 7 -2
Generating DLL File .. 7 -2
Creating VB.NET Project... 7 -3
Adding Referenced Project... 7 -3
Working with the Generated Code and Persistent Library ... 7 -4
Running Application .. 7 -10

Programmer’s Guide for .NET

0-6

Chapter 8 - Programming in C++ .NET
Introduction ..8 -2
Generating DLL File ..8 -2
Creating C++ Project..8 -3
Adding Referenced Project...8 -4
Working with the Generating Code and Persistent Library..8 -5
Running the Application...8 -10

Generating C# .NET, Database and
Persistent Library 1

Programmer’s Guide for .NET Chapter 1 – Generating C# .NET, Database and Persistent Library

1-2

Chapter 1 - Generating C# .NET, Database and
Persistent Library

DB Visual ARCHITECT (DB-VA) can generate C# .NET code, export database schema (DDL) to database and create the
persistent library based on your design in the class diagram and entity relationship diagram. DB-VA will generate a high
performance O/R Mapping (ORM) layer library that is readily for you to code and build. The ORM library basically intends to
takes most of the relational to object-oriented mapping burden off your shoulder. With generated ORM code and library, you
can take the plain C# objects to use in the application and tell the ORM layer to persist the object for you (e.g.
ObjectDAO.save(myObject);). This chapter gives you an introduction to DB-VA, describe how to configure database, generate
database and C# .NET code step by step.

In this chapter:

• Introduction
• Configuring Database
• Generating Database
• Generating C# .NET Code

Introduction

DB Visual ARCHITECT (DB-VA) provides an easy-to-use environment bridging between object model, data model and
relational database. You can use visual modeling for both logical data design and physical data design. It also automates the
mapping between object model and data model.

In this chapter, we assume that you know how to use the class diagram and entity relationship diagram to design the model
(please refer to the Designer Guide for the design with class diagram and entity relationship diagram in details). Class Diagram
and Entity Relationship Diagram will be used in this chapter to demonstrate how to use the -VA to export database schema
(DDL) to database and generate C# persistent code.

Figure 1.1 - Mapping between classes and entities

Programmer’s Guide for .NET Chapter 1 – Generating C# .NET, Database and Persistent Library

1-3

Configuring Database

DB-VA covers most of the databases in the market. You can check the latest supported databases version from
http://www.visual-paradigm.com/product/dbva/

1. Please open flight.vpp or draw the class diagram above and synchronize to ERD.
2. From the menu, select Tools > Object-Relational Mapping (ORM) > Database Configuration... to open the

Database Configuration dialog box.

Figure 1.2 - select Database Configuration

3. Select .NET in Language in drop down menu, select a database and enter database settings. We will use MySQL
database in this example.

Figure 1.3 - Database Configuration dialog

Programmer’s Guide for .NET Chapter 1 – Generating C# .NET, Database and Persistent Library

1-4

4. Enter database setting

For Driver , select a .NET Driver. It contains the default Driver Class and Dialect. You can click the drop down
button to modify its Driver Class and Dialect.

Figure 1.4 - The driver configuration

For Driver and Adapter Driver file, you can click the Driver button to select Download Driver and Adapter,
Download, Update, or Default Driver . DB-VA will help you to download the most up-to-date driver and adapter
driver according to the Driver field information. You also can select Browse...to select a driver and adapter driver file
in your computer.

Figure 1.5 - The download button

After downloaded the driver file, <<MySQL Connector/Net 1.0.6>> shown on the Driver file indicates that the .NET
driver file is downloaded with the specified version number by DB-VA.

For the Connection String, It provides the Connection String template for different databases. You need to fill in the
information for Connection String to connect database.

The original template for MySQL Connection URL:

Server=<host_name>;Database=<database_name>;User ID =<username>;Password=<password>;
CharSet=<charset>

The modified template for MySQL Connection URL:

Server=localhost;Database=control;User ID=root;

5. Test the database connection by clicking the Test Connection button

Figure 1.6 - Test Connection button

If success to connect with database the Connection Successful dialog box will show, otherwise the Connection
Exception dialog box will appear.

Figure 1.7 - The connection successful/failure message

Programmer’s Guide for .NET Chapter 1 – Generating C# .NET, Database and Persistent Library

1-5

6. Select a database to be the default database which is the default database connection for generating code and database.
• Right click on database and select Set as Default

Figure 1.8 - Set the database as default

DB-VA allows you to change the default database anytime, which means you can change to use any database when
you are developing application. And you do not need to worry about the database-specific details because DB-VA will
take care of them for you. You only need to configure the target database as default.

Generating Database

Now you can export the database schema from the Entity Relationship Diagram to the default database.

1. From the menu bar, select Tools > Object-Relational Mapping (ORM) > Generate Database... to open the
Database Code Generation dialog box.

Figure 1.9 - To Generate Database

Programmer’s Guide for .NET Chapter 1 – Generating C# .NET, Database and Persistent Library

1-6

2. The dialog box shows the previously configured default database setting.

Figure 1.10 - Database Code Generation dialog

3. Select Generate Database option which specifies the action for the database. Since this is the first time you export
database schema, so you can select the Create Database option. DB-VA allows you to select Create Database,
Update Database, Drop and Create Database and Drop Database.

Figure 1.11 - Generate Database options

4. Select Export to database option allows altering the database immediately after you click the OK button.

Figure 1.12 - Export to database option

5. Select Generate DDL allows the generation of DDL file.

Figure 1.13 - Generate DDL option

Programmer’s Guide for .NET Chapter 1 – Generating C# .NET, Database and Persistent Library

1-7

6. If you used some reserved word (e.g. Order) in your database design, you can choose the Quote SQL Identifier
option to avoid the naming problem in your design with the target database. Auto -only quote the detected reserved
word. Yes -quote all table or column names. No - donï¿½ï¿½t quote any word(s)

Figure 1.14 - Quote SQL Identifier options

7. Click Database Options button to reconfigure the database settings before generating database.
8. Click OK on the dialog box then DB-VA will export the database schema to the default database and generate the

DDL file to the output path.

Figure 1.15 - Generate ORM Code/Database dialog

9. Check the tables created in the MySQL database.

Figure 1.16 - The tables generate in database

10. Read the generated DDL file

create table Flight (ID int not null auto_increment, departureTime date,
departingAirport varchar(255), arrivingAirport varchar(255), PlaneID int, primary key
(ID)) type=InnoDB;

create table Plane (ID int not null auto_increment, PlaneType varchar(255), maxSpeed
double not null, maxDistance double not null, primary key (ID)) type=InnoDB;

alter table Flight add index FK_Flight_1115 (PlaneID), add constraint FK_Flight_1115
foreign key (PlaneID) references Plane (ID);

Programmer’s Guide for .NET Chapter 1 – Generating C# .NET, Database and Persistent Library

1-8

Generating C# .NET Code

Now you can export the database schema from the Entity Relationship Diagram to the default database.

1. From the menu bar, select Tools > Object-Relational Mapping (ORM) > Generate Database... to open the
Database Code Generation dialog box.

Figure 1.17 - To generate code

2. The Database Code Generation dialog box for C#:

Figure 1.18 - Database Code Generation dialog

• Output Path

Specify the location of C# persistent code generation.

Programmer’s Guide for .NET Chapter 1 – Generating C# .NET, Database and Persistent Library

1-9

• Error Handling

Select the way to handle errors. The possible errors include PersistentException, ADOException.

• Return false/null - It returns false/null in the method to terminate its execution.
• Throw PersistentException - It throws a PersistentException which will be handled by the caller.

Figure 1.19 - Error Handling options

• Exception Handling
• Do not Show - It hides the error message.
• Print to Error Stream -It prints the error message to the error stream.
• Print to log4net - It prints the error message to the log4net library.

Figure 1.20 - exception Handling options

• Lazy Collection Initialization

Check this option to avoid the associated objects from being loaded when the main object is loaded.
Unchecking this option will result in the loading of associated objects when the main object is loaded. If you
enabled (checked) the lazy collection initialization, associated objects (1 to many) will not be loaded until
you access it (e.g. getFlight(0)). Enabling this option usually reduce more then 80% of the database loading.

• Association Handling

Select the type of association handling to be used, either Smart or Standard.

• Smart - With smart association handling, when you update one end of a bi-directional association,
the generated persistent code is able to update the other end automatically. Besides, you do not need
to cast the retrieved object(s) into its corresponding persistence class when retrieving object(s) from
the collection.

• Standard - With standard association handling, you must update both ends of a bi-directional
association manually to maintain its consistency. Besides, casting of object(s) to its corresponding
persistence class is required when retrieving object(s) from the collection.

Figure 1.21 - Association Handling options

Programmer’s Guide for .NET Chapter 1 – Generating C# .NET, Database and Persistent Library

1-10

• Persistent API

Select the type of persistent code to be generated, Static Methods, Factory Class, DAO or POJO.

• Static Method - Client can create, retrieve, and persist the PersistentObject directly.
• Factory Class - Create FactoryObject class for client to create and retrieve PersistentObject. Client

still can persist the PersistentObject directly.
• DAO - Client uses the PersistentObjectDAO class to create, retrieve and persist PersistentObject.
• POJO - Client uses the PersistentManager to retrieve and persist PersistentObject

Figure 1.22 - Persistent API options

• Create Criteria

You can check the option for Generate Criteria to generate the criteria class for each ORM Persistable class.
The Criteria is used for querying the database in an object-oriented way (please refer to chapter 9 for more
details about the criteria)

• Sample

Sample files, including C# application sample and C# project file for Visual Studio .NET 2003 are available
for generation. The generated sample files guide you through the usage of the C# persistence class. You can
check the options to generate the sample files for reference.

You need to select to generate the sample and check create C# project because you will modify the sample to
execute the generated C# persistence class in Visual Studio .NET 2003.

• C# Assembly name

Specify the name of the assembly for the .NET application which holds the assembly metadata.

• Compile to DLL

By checking the option of Compile to DLL, DB-VA will generate DLL files which can be referenced by
.NET projects of language other than C# source.

Programmer’s Guide for .NET Chapter 1 – Generating C# .NET, Database and Persistent Library

1-11

• Advance Setting
• Default Order Collection Type - Select the type of ordered collection to be used in handling the

multiple cardinality relationship, either List or Map.
• Default Un-Order Collection Type - Select the type of un-ordered collection to be used in

handling the multiple cardinality relationship, either Set or Bag.
• Override toString Method - Select the way that you want to override the toString method of the

object. There are three options provided to override the toString method as follows:
• ID Only - the toString method returns the value of the primary key of the object as string.
• All Properties - the toString method returns a string with the pattern

"Entity[<column1_name>=<column1_value><column2_name>=<column2_value>...]".
• No - the toString method will not be overridden.

Figure 1.23 - Advance Setting dialog

3. Click OK to generate the C# persistent code to the Output Path.
• bin folder contains the generated code DLL.
• src folder contains the source code of C#.
• lib folder contains the persistent library.

Figure 1.24 - The generated output

Programmer’s Guide for .NET Chapter 1 – Generating C# .NET, Database and Persistent Library

1-12

Configuring Source and Library in
Visual Studio .NET 2003 2

Programmer’s Guide for .NET Chapter 2 – Configuring Source and Library in Visual Studio .NET 2003

2-2

Chapter 2 - Configuring Source and Library in
Visual Studio .NET 2003

Microsoft Visual Studio .NET 2003 is an advanced integrated development environment by Microsoft. It lets programmers to
create programs that run on Microsoft Windows and the World Wide Web.

In chapter 2, you have generated C# code, exported database schema (DDL) and created persistent library. Now you can create
a project for the generated C# code in Visual Studio .NET 2003.

In this chapter:

• Copying Generated Source and Library to Visual Studio .NET Project
• Adding Reference of an Existing Project to DB-VA Generated C# Project
• Testing the Visual Studio .NET Project

Copying Generated Source and Library to Visual Studio .NET
Project

You can create Visual Studio .NET project easily because DB-VA supports the generation of C# project file. The project file
helps you to configure the generated C# classes, resources files and referenced libraries in Visual Studio .NET.

1. Select C# Project File in the Database Code Generation dialog box

Figure 2.1 - The C# Project File options

2. The C# Project File is created in the Output Path\src folder

Figure 2.2 - The generated C# Project file

Programmer’s Guide for .NET Chapter 2 – Configuring Source and Library in Visual Studio .NET 2003

2-3

3. Open Visual Studio .NET 2003. From the menu bar, select Open > Project.

Figure 2.3 - Open a project files

4. Select the Airport.csproj and click Open

Figure 2.4 - Select a project

5. All Libraries are added to References and C# classes are inside the project.

Figure 2.5 - The project contains all sources and library

Programmer’s Guide for .NET Chapter 2 – Configuring Source and Library in Visual Studio .NET 2003

2-4

Adding Reference of an Existing Project to DB-VA Generated C#
Project

You can also reference the generated C# Visual Studio .NET Project as a library to develop an application.

1. Open Visual Studio .NET Project. Select File > New > Project on menu bar.

Figure 2.6 - To create a new project

2. Select Project Types as Visual C# Projects and Templates as Console Application. Enter the Project and Location
for the new project and click OK .

Figure 2.7 - New Project dialog

3. The AirportApplication project is created.

Figure 2.8 - Project created

You have an existing solution called AirportApplication and you may want to use the generated persistent code to
develop a database application in AirportApplication.

Programmer’s Guide for .NET Chapter 2 – Configuring Source and Library in Visual Studio .NET 2003

2-5

4. Right click Solution > Add > Existing Project... to select the generated Project

Figure 2.9 - To add and existing project

5. Select the generated C# Project File (Airport.csproj) and add it to the existing Solution.

Figure 2.10 - select the project file

6. The generated C# project is added to Solution.

Figure 2.11 - Project imported

Programmer’s Guide for .NET Chapter 2 – Configuring Source and Library in Visual Studio .NET 2003

2-6

7. Right click Airport and select Properties on menu.

Figure 2.12 - To open the project properties

8. Change the Output Type from "Windows Application" to "Class Library". Click OK .

Figure 2.13 - Project Property Page

9. From the menu bar, select Build > Rebuild Solution. The DLL file is generated.

Figure 2.14 - To rebuild the solution

Programmer’s Guide for .NET Chapter 2 – Configuring Source and Library in Visual Studio .NET 2003

2-7

10. Right click the AirportApplication project and select Add Reference...on menu.

Figure 2.15 - Add project reference

11. Select Airport Project in Projects tab.

Figure 2.16 - Add Reference dialog

Programmer’s Guide for .NET Chapter 2 – Configuring Source and Library in Visual Studio .NET 2003

2-8

12. Select .NET tab and add all the libraries (HashCodeProvider.dll, log4net.dll, MySQL.Data.dll, NHibernate.dll) in
Airport project's lib folder.

Figure 2.17 - Select the Component

13. The Airport project and libraries are added to the AirportApplication project's Reference. You can develop application
to call C# persistent classes in the AirportApplication project.

Figure 2.18 - The reference added

14. Copy the hibernate.cfg.xml file from Airport project\src to AirportApplication project\bin\Debug . The
hibernate.cfg.xml contains the information of database connections and other settings.

Figure 2.19 - Copy the hibernate.cfg.xml to debug folder

Programmer’s Guide for .NET Chapter 2 – Configuring Source and Library in Visual Studio .NET 2003

2-9

Testing the Visual Studio .NET Project

You have created the AirportApplication project and referenced the generated Airport project. You can develop a simple
program to test the project.

1. Open the Class1.cs file in AirportApplication.
2. Modify the Class1.cs file.

using System;
using airport;
using Orm;

namespace AirportApplication
{

/// <summary>
/// Summary description for Class1.
/// </summary>
class Class1
{

/// <summary>
/// The main entry point for the application.
/// </summary>
[STAThread]
static void Main(string[] args)
{

PersistentTransaction t =
airport.AirportPersistentManager.Instance().GetSess ion().BeginTrans
action();
try
{

airport.Flight lairportFlight =
airport.FlightFactory.CreateFlight();
// Initialize the properties of the persistent obje ct
lairportFlight.ArrivingAirport = "Hong Kong International
Airport";
lairportFlight.DepartingAirport = "Kansai International
Airport" ;
lairportFlight.DepartureTime = DateTime.Now;

airport.Plane lairportPlane =
airport.PlaneFactory.CreatePlane();
// Initialize the properties of the persistent obje ct
lairportPlane.PlaneType = "747 plane" ;
lairportPlane.MaxSpeed = 967;
lairportPlane.MaxDistance = 8232;
lairportPlane.flights.Add(lairportFlight);
lairportPlane.Save();
// lairportPlane.Save();
t.Commit();

}
catch (Exception e)
{

t.RollBack();
Console.WriteLine(e);

}
}

}
}

Programmer’s Guide for .NET Chapter 2 – Configuring Source and Library in Visual Studio .NET 2003

2-10

3. From the menu bar, select Build > Rebuild Solution.

Figure 2.20 - To rebuild solution

4. Select Debug > Start Without Debugging to execute Class1.cs.

Figure 2.21 - To start without debugging

5. Check the MySQL database. The record is created.

Figure 2.22 - The record is created in the database

Developing ASP.NET Application 3

Programmer’s Guide for .NET Chapter 3- Developing ASP.NET Application

3-2

Chapter 3 - Developing ASP.NET Application

With DB Visual ARCHITECT (DB-VA) you can develop quality ASP.NET Web Application much faster, better and cheaper.
All DB-VA generated C# code, configuration files and persistent layer library are deployable to Internet Information Services
(IIS). DB-VA generates all C# code for accessing database. You do not need to write SQL to insert, query, update or delete the
record. All code you need to program is plain C# code (e.g. OrderDAO.Save(myOrder);). In this chapter we will use a simple
"School System" application to show you how to generate C# code, configure your web application, and create/query/update/
delete objects. Again you do not need to write a single SQL statement for all above operations.

Figure 3.1 - The architecture of ASP .NET application with DB-VA Persistent Layer

In this chapter:

• Introduction
• Creating Object and Saving to Database
• Querying Object from Database
• Updating Object and Saving to Database
• Deleting Object in Database

Introduction

You will develop a School System.

The School System provides the following functions:

• Create course by teacher
• Enroll course for student
• Cancel course by teacher
• Register for user
• Modify the personal information
• View the Course information (number of student enroll and teacher information of the course)

Required Software:

• DB Visual ARCHITECT 3.0 Java or Professional Edition (http://www.visual-paradigm.com/download/)
• Visual Studio .NET 2003 (http://msdn.microsoft.com/vstudio/previous/2003/)

Programmer’s Guide for .NET Chapter 3- Developing ASP.NET Application

3-3

Please open the SchoolSystem.vpp project file in the Chapter 3 School System.zip file. The project file contains the following
diagrams. Please refer to the Designer Guide for details about how to draw class diagram and entity relationship diagram.

Class Diagram of School System:

Figure 3.2 - Class Diagram

Entity Relationship Diagram of School System:

Figure 3.3 - Entity Relationship Diagram (ERD)

Creating Object and Saving to Database

Before writing code to develop the ASP.NET application, you need to:

1. Generate the C# code for accessing database by DB-VA
2. Create the ASP.NET Web Application project.
3. Add generated C# project to Solution which contain the ASP.NET Web Application project.
4. Add the generated C# project and persistent library to the references of the ASP.NET Web Application project.

The details of how to setup the environment to develop the ASP.NET application, please refer to Chapter 2 - Configuring the
Source and Library in Visual Studio.

The school system provides separate register pages for teacher and student to enter their information. The register method of
teacher and student method is the same, so we only demonstrate how to create the teacher and save to database.

1. Create the RegisterUserComponent. It contains Login ID, User Name, Password and Email Field for User to input
information. It has RequestedFieldValidators to check the Login ID and Password field so they do not allow blank. It
can be reused in teacher and student register page.

Figure 3.4 - The RegisterUserComponent

Programmer’s Guide for .NET Chapter 3- Developing ASP.NET Application

3-4

2. Create a Web Form called teacherReg.aspx and drag the RegisterUserControl to it.

Figure 3.5 - The Web Form

3. Double click the Submit button to create the submitButton_Click method to handle the button click event.

private void submitButton_Click(object sender, System.EventArgs e)
{
...
}

Source Code : webschoolsystem\teacherReg.aspx.cs

4. Use RegisterUserComponent information to create the Teacher in system.
• Get the RegisterUserComponent from the Page.

userControl = (RegisterUserControl) Page.FindContro l("RegisterUserControl1");

Source Code : webschoolsystem\teacherReg.aspx.cs

• Notify Session to begin transaction.

PersistentTransaction t =
SchoolSystemPersistentManager.Instance().GetSession ().BeginTransaction();

Source Code : webschoolsystem\teacherReg.aspx.cs

• Create the Teacher instance and set the value to the Teacher instance properties

try
{

Teacher lTeacher = TeacherFactory.CreateTeacher();
lTeacher.LoginID = userControl.LoginID;
lTeacher.Name = userControl.UserName;
lTeacher.Password = userControl.Password;

Source Code : webschoolsystem\teacherReg.aspx.cs

• Save the Teacher instance and call transaction to commit.

lTeacher.Save();
t.Commit();

Source Code : webschoolsystem\teacherReg.aspx.cs

• Add the Teacher instance to Http Session for checking whether the user has login, and then redirect the user
to the login page.

Session.Add("user" , lTeacher);
Response.Redirect("login.aspx", true);

Source Code : webschoolsystem\teacherReg.aspx.cs

Programmer’s Guide for .NET Chapter 3- Developing ASP.NET Application

3-5

• Add the catch block to handle the exception and transaction can be rollback.

catch (Exception ex)
{

Console.WriteLine(ex.StackTrace);
t.RollBack();
returnMsgLabel.Text = "Error to add a new teacher" ;

}

• Close the transaction session

SchoolSystemPersistentManager.Instance().GetSession ().Close();

Source Code : webschoolsystem\teacherReg.aspx.cs

Figure 3.6 - Register on the page

Figure 3.7 - The record is insert to the database

Querying Object from Database

You can retrieve the record in database as object. For example, you need to create the login function for the School System. It
will request the user to input the user ID and password to login, the system retrieve the User object with the user id and
compare the password to validate the user.

1. Create the Login.aspx. It is used for user to login to the school system.

Figure 3.8 - Login page

Programmer’s Guide for .NET Chapter 3- Developing ASP.NET Application

3-6

2. Redirect the user to the student page or the teacher page when user is login. Try to get the User object from http
session.

private void redirectLoginedUser()
{

Object lObj = Session.Contents["user"];
if (lObj != null)
{

if (lObj is Teacher)
{

Response.Redirect("teacherPage.aspx" , true);
}
else if (lObj is Student)
{
Response.Redirect("studentPage.aspx" , true);
}

}
}

Source Code : webschoolsystem\login.aspx.cs

3. Get the User object by the user input Login ID and compare the user input password and the object password in the
Submit button click event. If the password matches then user can access the system.

• Get the user input information from the field.

String lID = loginIDTextBox.Text;
String lPassword = passwordTextBox.Text;

Source Code : webschoolsystem\login.aspx.cs

• Load User Object by LoadByUserORMID method.

User lUser = UserFactory.LoadUserByORMID(lID);

Source Code : webschoolsystem\login.aspx.cs

• Check User Object is it null and compare the password of user input

if (lUser != null)
{

if (lUser.Password == lPassword)
{

Session.Add("user" , lUser);
redirectLoginedUser();

}
else
{

returnMsgLabel.Text = "User ID or Password incorrect" ;
}

Source Code : webschoolsystem\login.aspx.cs

Programmer’s Guide for .NET Chapter 3- Developing ASP.NET Application

3-7

Updating Object and Saving to Database

You can modify the teacher information and update the record in database. You get the User object from the session and set the
new values for the User object, finally call save() method to update the record in database.

1. Click Modify Personal Information hyperlink to edit the user information.

Figure 3.9 - Teaching Page

2. It shows user information and allows you to update the user information except Login ID.

Figure 3.10 - To modify the user information

3. Click the submit button and it will set the updated information to the User object from the Http Session.

Object lObj = Session.Contents["user"];
if (lObj == null)
{

Response.Redirect("login.aspx");
}
else
{

school.SchoolSystemPersistentManager.Instance().Get Session().Lock(lObj,
NHibernate.LockMode.None);

}

4. Update information of User object.

user.Name = registerUserControl.UserName;
user.Password = registerUserControl.Password;
if (user is Teacher)
{

((Teacher)user).Email = registerUserControl.Email;
}
user.Save();
t.Commit();

Source Code : webschoolsystem\login.aspx.cs

Programmer’s Guide for .NET Chapter 3- Developing ASP.NET Application

3-8

Figure 3.11 - The record in database are modified

Deleting Object in Database

Teachers can create course for students to enroll and they can cancel courses in the system. They only need to click cancel
hyperlink of the course then the course information will be deleted in the database and all the relationship with registered
students will be removed.

1. Teacher can create course by selecting the Create Course hyperlink in teacher page. Fill in Course name and
Description to create Course:

Figure 3.12 - Delete record

2. Student can register the course in the student page.

Figure 3.13 - Student Page

3. The teacher can view how many students have registered his course, and he can cancel the course.

Figure 3.14 - Teacher Page

Programmer’s Guide for .NET Chapter 3- Developing ASP.NET Application

3-9

4. Click Cancel of a Course then it will pass the course id to the function:
• Use course id to load the Course object in teacherPage.aspx - deleteCourse() method

string delCourseID = Request.Params["delCourseID"];
PersistentTransaction t =
SchoolSystemPersistentManager.Instance().GetSession ().BeginTransaction();
try
{
Course lCourse = CourseFactory.LoadCourseByORMID(int.Parse(delCourseID));

• Call deleteAndDissociate() method to delete the course object and remove the relationship of student and
teacher.

lCourse.DeleteAndDissociate();
t.Commit();

}

Programmer’s Guide for .NET Chapter 3- Developing ASP.NET Application

3-10

Deevloper Standalone .NET
Application 4

Programmer’s Guide for .NET Chapter 4 – Developing Standalone .NET Application

4-2

Chapter 4 - Developing Standalone .NET
Application

With DB Visual ARCHITECT (DB-VA) you can develop quality Standalone .NET Application much faster, better and
cheaper. DB-VA generates code, configuration files and persistent layer library. You do not need to write SQL to insert, query,
update or delete the records. All code you need to program is plain C# code (e.g. OrderDAO.save(myOrder);). In this chapter
we will use a simple "School System" application to show you how to generate C# code, create standalone C# application, and
create/query/update/delete objects. Again, you do not need to write a single SQL statement for all the above operations.

Figure 4.1 - The architecture of Standalone .NET Application with DB-VA Persistent Layer

In this chapter:

• Using the PersistentManager
• Creating Object and Saving to Database
• Querying Object from Database
• Updating Object and Saving to Database
• Deleting Object in Database

Introduction

You will develop a School System.

The School System provides the following functions:

• Create course by teacher
• Enroll course for student
• Cancel course by teacher
• Register for user
• Modify the personal information
• View the Course information (number of student enrolled and teacher information of the course)

Required Software:

• DB Visual ARCHITECT 3.0 Java or Professional Edition (http://www.visual-paradigm.com/download/)
• Visual Studio .NET 2003 (http://msdn.microsoft.com/vstudio/previous/2003/)

Programmer’s Guide for .NET Chapter 4 – Developing Standalone .NET Application

4-3

Class Diagram of School System:

Figure 4.2 - Class Diagram

Entity Relationship Diagram of School System:

Figure 4.3 - Entity Relationship Diagram (ERD)

Using the PersistentManager

In DB-VA generated code there is a PersistentManager class. The PersistentManager can manage the database connection
information and states of the persistent objects. When you create or update the persistent object, you can request the
PersistentManager to get session and notify begin transaction.

Sample:

private void okButton_Click(object sender, System.EventArgs e)
{

DialogResult = DialogResult.OK;
if (titleTextBox.Text.Length > 0)
{

PersistentTransaction t =
SchoolSystemPersistentManager.Instance().GetSession ().BeginTransaction();
try
{

Course lCourse = CourseFactory.CreateCourse();
lCourse.Title = titleTextBox.Text;
lCourse.Description = descriptionTextBox.Text;
lCourse.Teacher = _teacher;
lCourse.Save();
t.Commit();
CreatedCourse = lCourse;
Close();

}
catch(Exception ex)
{

Console.WriteLine(ex.InnerException.Message);
t.RollBack();

}
}
else
{

MessageBox.Show("Missing Title");
}

}

Source File : Standalone School System\CreateCourseDialog.cs

Programmer’s Guide for .NET Chapter 4 – Developing Standalone .NET Application

4-4

Creating Object and Saving to Database

In developing C# application, you need to generate code by DB-VA and configure the source code and library. The following
example is a standalone .NET application, so you need to pay attention to the following settings when configure to generate C#
code.

1. From the menu bar, select Tools > Object-Relational Mapping (ORM) > Generate Code... to open the Database
Code Generation dialog box.

Figure 4.4 - Select generate code

2. Fill in code generation information.

For Language, select C#.
For Association Handling, select Smart.
For Persistent API, select Factory Class.

Figure 4.5 - Database Code Generation dialog

Programmer’s Guide for .NET Chapter 4 – Developing Standalone .NET Application

4-5

For the other configuration details, please refer to Chapter 1 - Generating .NET Code, Database Schema (DDL) and
Persistent Library and Chapter 2 - Configuring Source and Library in Visual Studio.

The school system provides the register function for teacher and student. They need to enter login id, password
etc...information to the system. The registration process is the same for both teacher and student, so we only
demonstrate how to create the student and save to database.

3. From the menu bar, select File > Student Register to open the Add Student dialog box.

Figure 4.6 - School System

4. Enter the Student information; click OK to create the new Student record in the School System.

Figure 4.7 - Register dialog

5. After click OK, the system creates the new Student Persistent object.

Private void okButton_Click(object sender, System.EventArgs e)
{

...
PersistentTransaction t =
SchoolSystemPersistentManager.Instance().GetSession ().BeginTransaction();
try
{

if (_userType == CREATE_TEACHER)
{

User = TeacherFactory.CreateTeacher();
}
else if (_userType == CREATE_STUDENT)
{

User = StudentFactory.CreateStudent();
}

Source File : Standalone School System\RegisterDialog.cs

Programmer’s Guide for .NET Chapter 4 – Developing Standalone .NET Application

4-6

6. Set the student information from the text fields value to the Student Object

User.Name = userNameTextBox.Text;
User.Password = passwordTextBox.Text;
User.LoginID = loginIDTextBox.Text;
if (User is Teacher)
{

((Teacher)User).Email = emailTextBox.Text;
}

Source File : Standalone School System\RegisterDialog.cs

7. Call Save() method of Student Persistent Object and call Commit() method of PersistentTransaction., then the new
Student object will be saved in database. If the transaction has error occurred during the transaction, you can call the
rollback() method to cancel the proposed changes in a pending database transaction.

User.Save();
t.Commit();
Close(); //close dialog

}
catch (Exception ex)
{

Console.WriteLine(ex.InnerException.Message);
t.RollBack();

}

Source File : Standalone School System\RegisterDialog.cs

Querying Object from Database

After the user login the School System, the system queries different Course objects from the database according to user role. If
the user is a student, then the system shows all the available courses. The student can select and register the course. If the user
is a teacher, then the system shows courses that are created by that teacher. The teacher can update or delete the course
information in the system.

Student Login:

Figure 4.8 - Student login to the system

Programmer’s Guide for .NET Chapter 4 – Developing Standalone .NET Application

4-7

Teacher Login:

Figure 4.9 - Teacher login to the system

1. Query the course objects when user login. When Student login, the system will call listCourseByQuery() method in
CourseFactory to get all available courses. When Teacher login, the system will call courses collection variable in
Teacher object.

private void UpdateTreeView()
{
Course[] lCourses = null;
if (CurrentUser is Student)
{
lCourses = CourseFactory.ListCourseByQuery(null, null);
}
else if (CurrentUser is Teacher)
{
lCourses = ((Teacher)CurrentUser).courses.ToArray() ;
}

Source File : Standalone School System\SchoolSystemForm.cs

Updating Object and Saving to Database

You can modify the user information and update the record in database. After the user login, the User object is stored in the
application, so you can set new information in the user object and update the database record.

1. From the menu bar, select User > Modify User Information to open the Modify User Information dialog box.

Figure 4.10 - To modify user information

Programmer’s Guide for .NET Chapter 4 – Developing Standalone .NET Application

4-8

2. Enter new user information and click OK to update the User record.

Figure 4.11 - Modify User Information dialog

3. Update the information for the User object includes password, name and email address. This operation is just as
simple as the create User object process.

private void okButton_Click(object sender, System.EventArgs e)
{

if (nameTextBox.Text.Length == 0 || passwordTextBox.T ext.Length == 0)
{

MessageBox.Show("Missing user name or password");
}
else
{

PersistentTransaction t =
SchoolSystemPersistentManager.Instance().GetSession ().BeginTransaction();
try
{

_user.Name = nameTextBox.Text;
_user.Password = passwordTextBox.Text;
if(_user is Teacher)
{

((Teacher)_user).Email = emailTextBox.Text;
}
_user.Save();
DialogResult = DialogResult.OK;
t.Commit();

}
catch (Exception)
{

DialogResult = DialogResult.Cancel;
t.RollBack();

}
Close();

}
}

Source File : Standalone School System\ModifyUserDialog.cs

Programmer’s Guide for .NET Chapter 4 – Developing Standalone .NET Application

4-9

Deleting Object in Database

Teachers can create courses for students to register and they can cancel courses in the system. They only need to click delete
button of the course then the course information will be deleted in the database, and its relationships with registered students
will be removed.

1. Teacher can create the course by clicking the Add Course button, fill in Course name and Description to create
Course

Figure 4.12 - Create Course dialog

2. Student can register the course by clicking the Register button.

Figure 4.13 - Course are created

3. The teacher can view how many students registered his course, and he can delete the course in system.

Figure 4.14 - Delete a course

Programmer’s Guide for .NET Chapter 4 – Developing Standalone .NET Application

4-10

4. Click Delete of a Course then it will trigger the delButton_Click() method .

private void delButton_Click(object sender, System.EventArgs e)
{

if (MessageBox.Show("Delete" , "Delete" , MessageBoxButtons.OKCancel) ==
DialogResult.OK)
{

Source File : Standalone School System\CoursePanel.cs

Call deleteAndDissociate() method to delete the course object and remove the relationships of student and teacher
with the course.

Try
{

_courseNode.Course.DeleteAndDissociate();
_courseNode.Remove();
t.Commit();

}
catch (Exception ex)
{

Console.WriteLine(ex.InnerException.Message);
t.RollBack();

}

Source File : Standalone School System\CoursePanel.cs

Querying Database 5

Programmer’s Guide for .NET Chapter 5 – Querying Database

5-2

Chapter 5 - Querying Database

DB Visual ARCHITECT(DB-VA) provides two features to query database. You can use the ORM Qualifier and Criteria to
define you requirements to retrieve the data from database. They provide a much simpler way to retrieve records from the
database than SQL query.

In this chapter:

• Introduction
• Creating Test Data
• Using ORM Qualifier
• Using Criteria

Introduction

If you want to provide the search function and make an easy way to retrieve records from the database, then you can use ORM
Qualifier or Generate Criteria in DB-VA, in this chapter, we use an example to tell you that how to use the criteria class to
search the persistent objects with your defined condition. First of all, you need to create the Class Diagram and synchronizes to
Entity Relationship Diagram.
Class Diagram:

Entity Relationship Diagram:

Creating Test Data

You can create a staff record in the database and test how the criteria class can help you to retrieve the record.

1. Open CreateUntitledData.cs and modify the code with the following content:

private void CreateData() {
 PersistentTransaction t =
com.UntitledPersistentManager.Instance().GetSession ().BeginTransaction();
 try {
 com.Staff lcomStaff = com.StaffFact ory.CreateStaff();
 // Initialize the properties of the persistent obje ct
 lcomStaff.Name = "Paul";
 lcomStaff.Age = 12;
 lcomStaff.Dob = new DateTime(1993, 11, 7);
 lcomStaff.Gender = 'm';
 lcomStaff.Save();

 lcomStaff = com.StaffFactory.Create Staff();

Programmer’s Guide for .NET Chapter 5 – Querying Database

5-3

 lcomStaff.Name = "Erica";
 lcomStaff.Age = 33;
 lcomStaff.Dob = new DateTime(1972, 11, 7);
 lcomStaff.Gender = 'f';
 lcomStaff.Save();

 lcomStaff = com.StaffFactory.Create Staff();
 lcomStaff.Name = "Peggy";
 lcomStaff.Age = 45;
 lcomStaff.Dob = new DateTime(1960, 11, 7);
 lcomStaff.Gender = 'f';
 lcomStaff.Save();

 lcomStaff = com.StaffFactory.Create Staff();
 lcomStaff.Name = "Sam";
 lcomStaff.Age = 22;
 lcomStaff.Dob = new DateTime(1983, 11, 7);
 lcomStaff.Gender = 'm';
 lcomStaff.Save();
 t.Commit();
 }
 catch (Exception e) {
 t.RollBack();
 Console.WriteLine(e);

 }

…

}

2. Execute the CreateUntitledData.class. The new record is added.

Programmer’s Guide for .NET Chapter 5 – Querying Database

5-4

Using ORM Qualifier

ORM Qualifier is an additional feature of DB-VA allowing you to specify the extra data retrieval rules apart from the system
pre-defined rules. ORM Qualifier can be defined when you generate persistence code.

Defining ORM Qualifier

1. Right-click on the Staff class, select Open Specification….

2. Click the ORM Qualifiers tab, then click Add….

3. The ORM Qualifier Specification dialog box is displayed with a list of attributes of the Staff class. Enter the name as
Gender and select attribute gender.

Programmer’s Guide for .NET Chapter 5 – Querying Database

5-5

4. Generate persistent code. The ORM Qualifier methods will be generated in the persistent class according to your
selected Persistent API. For example, if you have selected Factory class as Persistent API, the following methods will
be generated to the StaffFactory class.

Return
Type

Method Name Sample Description

Class LoadBy ORMQualifier(
DataType attribute)

LoadByGender(
char gender)

Retrieve the first record that
matches the specified value
with the attribute defined in the
ORM Qualifier.

Class LoadBy ORMQualifier(
PersistentSession session,
DataType attribute)

LoadByGender(
PersistentSession session,
char gender)

Retrieve the first record that
matches the specified value
with the attribute defined in the
ORM Qualifier and the
specified session.

Class[] ListBy ORMQualifier(
DataType attribute)

ListByGender(char gender) Retrieve the records that match
the specified value with the
attribute defined in the ORM
Qualifier.

Class[] ListBy ORMQualifier(
PersistentSession session,
DataType attribute)

ListByGender(
PersistentSession session,
char gender)

Retrieve the records that match
the specified value with the
attribute defined in the ORM
Qualifier and the specified
session.

Retrieving From ORM Qualifier

After you have created the “Gender” qualifier, you can use it to load or list the Staff data from database. The following are
examples to load or list records by ORM qualifier with the generated sample code.

After you have created the “Gender” qualifier, you can use it to load or list the Staff data from database. The following are
examples to load or list records by ORM qualifier with the generated sample code.

By Load method:

System.Console.WriteLine("Retrieving Staff by gende r...");

System.Console.WriteLine(com.StaffFactory.LoadByGen der('m'));

Result: After executing the code the first occurrence of ‘m’ gender column in the Staff table will be loaded to the object
identified as Staff.

Retrieving Staff by gender...
Staff[Name=Paul Age=12 Gender=m Dob=12/7/1993 12:0 0:00 AM ID=1]

Programmer’s Guide for .NET Chapter 5 – Querying Database

5-6

By List method:

System.Console.WriteLine("Retrieving Staffs by gend er...");
foreach (com.Staff lStaff in com.StaffFactory.ListByGender('f'))
{
 System.Console.WriteLine(lStaff);

}

Result: After executing the code, all rows which contain ‘f’ in the gender column in the Staff table will be retrieved and stored
in an array of Staff object.

Retrieving Staffs by gender...
Staff[Name=Erica Age=33 Gender=f Dob=12/7/1972 12: 00:00 AM ID=2]
Staff[Name=Peggy Age=45 Gender=f Dob=12/7/1960 12: 00:00 AM ID=3]

Using Criteria

When generating the persistence class for each ORM-Persistable class defined in the object model, the corresponding criteria
class can also be generated.

Configuring Criteria Class Generation

After you have created the Class Diagram and ER Diagram, you setup the database and generate code configuration. If you
want to use the Criteria Class, you must select the Generate Criteria option in the Database Code Generation dialog box.

1. From the menu, select Tools > Object-Relational Mapping (ORM) > Generate Code… to open the Database Code
Generation dialog box.

2. Select the Generate Criteria option. The other settings can be set to follow the picture below.

Select Sample so you can use the sample to test the criteria class.

Programmer’s Guide for .NET Chapter 5 – Querying Database

5-7

Open the Advance Settings dialog box and set the Override toString Method to All Properties. It can help you to
print out the properties of persistent objects. Click OK to generate the code with Criteria Class.

For more details of how to configure the database and generate code, please refer to Chapter 1 “Generate C# .NET
code, Database Schema (DDL) and Persistent Library”.

Description of Criteria Class

The following is the generated Staff class’s Criteria Class call “StaffCriteria ”.

namespace com {
 public class StaffCriteria : AbstractORMCriteria {
 private StringExpression _name;
 public StringExpression Name {
 get {
 return _name;
 }

 }

 private Int32Expression _age;
 public Int32Expression Age {
 get {
 return _age;
 }

 }

 private CharExpression _gender;
 public CharExpression Gender {
 get {
 return _gender;
 }

 }

 private DateTimeExpression _dob;
 public DateTimeExpression Dob {
 get {
 return _dob;
 }

 }

 private Int32Expression _ID;
 public Int32Expression ID {

Programmer’s Guide for .NET Chapter 5 – Querying Database

5-8

 get {
 return _ID;
 }

 }

 public StaffCriteria(PersistentSession session) :
base (session.CreateCriteria(typeof (Staff))) {
 _name = new StringExpression("Name", this);
 _age = new Int32Expression("Age", this);
 _gender = new CharExpression("Gender", this);
 _dob = new DateTimeExpression("Dob", this);
 _ID = new Int32Expression("ID", this);
 }

 public StaffCriteria() :
this (com.UntitledPersistentManager.Instance().GetSessio n()) {
 }

 public Staff UniqueStaff() {
 return (Staff) base .UniqueResult();
 }

 public Staff[] ListStaff() {
 IList lList = base .List();
 Staff[] lValues = new Staff[lList.Count];
 lList.CopyTo(lValues, 0);
 return lValues;
 }

}

The StaffCriteria class is generated with attribute, which are defined in the object model, with type of Expression with respect
to the type of attribute defined in the object model, and two operations for specifying the type of record retrieval.

To apply the restriction to the property, call the method:

criteria.property.expression(parameter);

where criteria is the instance of the criteria class; property is the property of the criteria; expression is the expression to be
applied on the property; parameter is the parameter(s) of the expression.

The table below shows the expressions used for specifying the condition for query.

Expression Description

Eq(value) The value of the property is equal to the specified value.

Ne(value) The value of the property is not equal to the specified value.

Gt(value) The value of the property is greater than the specified value.

Programmer’s Guide for .NET Chapter 5 – Querying Database

5-9

Ge(value) The value of the property is greater than or equal to the specified value.

Lt(value) The value of the property is less than the specified value.

Le(value) The value of the property is less than or equal to the specified value.

IsEmpty() The value of the property is empty.

IsNotEmpty() The value of the property is not empty.

IsNull() The value of the property is NULL.

IsNotNull() The value of the property is not NULL.

In(values) The value of the property contains the specified values in the array.

Between(value1, value2) The value of the property is between the two specified values, value1 and
value2.

Like(value) The value of the property matches the string pattern of value; use % in value
for wildcard.

Ilike(value) The value of the property matches the string pattern of value, ignoring case
differences.

For example:

staffCriteria.Age.Ge(13);

There are two types of ordering to sort the retrieved records - ascending and descending.

To sort the retrieved records with respect to the property, call the method:

criteria.property.Order(ascending_order);

where the value of ascending_order is either true or false. Pass true to sort the property in ascending order, or pass false to sort
the property in descending order.

For example:

staffCriteria.Age.Order(true);

To set the range of the number of records to be retrieved, use one of these two methods:

 SetFirstResult(int i) – Retrieve the i-th record from the results as the first result.

 SetMaxResult(int i) – Set the maximum number of retrieved records by the specified value i.

For example:

staffCriteria.SetMaxResults(100);

Programmer’s Guide for .NET Chapter 5 – Querying Database

5-10

The StaffCriteria class contains two methods to load the retrieved record(s) to an object or array.

 UniqueClass() – Retrieve a single record matching the specified condition(s) for the criteria; Exception will be
thrown if the number of retrieved record is not 1.

 ListClass() – Retrieve the records matched with the specified condition(s) for the criteria.

For example:

com.Staff[] staffs = staffCriteria.ListStaff();

Comparing Criteria Class and SQL Query

SQL Query can help you to find the record from the database and Criteria Class can also provide the same function to get the
persistent object from the database.

SQL Query is very long and easy to have syntax mistake but with the Criteria Class you can set the condition easily for each
property of the persistent class. With Criteria Class you can get the Persistent Objects directly, but with SQL Query you can
only get the individual data in database.

• By Specifying one criteria

Retrieve a staff record whose name is "Paul":

Criteria Class SQL Query

com.StaffCriteria staffCriteria = new
com.StaffCriteria();
staffCriteria.Name.Eq("Paul");
staffCriteria.SetMaxResults(ROW_COUNT);
com.Staff[] staffs =
staffCriteria.ListStaff();
int length =staffs== null ? 0 :
Math.Min(staffs.Length, 100);

for (int i = 0; i < length; i++) {
 System.Console.WriteLine(staffs[i]);
}

System.Console.WriteLine(length + "
Staff record(s) retrieved.");

SELECT * FROM staff WHERE name = 'Paul';

The Result:

Criteria Class SQL Query

Staff[Name=Paul Age=12 Gender=m
Dob=11/7/1993 12:00:00 AM ID=1]
1 Staff record(s) retrieved.

Programmer’s Guide for .NET Chapter 5 – Querying Database

5-11

Retrieve all staff records whose date of birth is between 1/1/1970 and 31/12/1985:

Criteria Class SQL Query

com.StaffCriteria staffCriteria = new
com.StaffCriteria();
staffCriteria.Dob.Between(new
DateTime(1970,1,1), new
DateTime(1985,12,31));
staffCriteria.SetMaxResults(ROW_COUNT);
com.Staff[] staffs =
staffCriteria.ListStaff();
int length =staffs== null ? 0 :
Math.Min(staffs.Length, ROW_COUNT);
for (int i = 0; i < length; i++) {
 System.Console.WriteLine(staffs[i]);
}

System.Console.WriteLine(length + "
Staff record(s) retrieved.");

SELECT * FROM staff WHERE dob > '1970-01-
01' AND dob < '1985-01-01';

The Result:

Criteria Class SQL Query

Staff[Name=Erica Age=33 Gender=f
Dob=11/7/1972 12:00:00 AM ID=2]
Staff[Name=Sam Age=22 Gender=m
Dob=11/7/1983 12:00:00 AM ID=4]
2 Staff record(s) retrieved.

• By Specifying more than one criteria

Retrieve all male staff records whose age is between 18 and 22:

Criteria Class SQL Query

com.StaffCriteria staffCriteria = new
com.StaffCriteria();
staffCriteria.Age.In(new int []{18, 22});
staffCriteria.Gender.Eq('m');
staffCriteria.SetMaxResults(ROW_COUNT);
com.Staff[] staffs =
staffCriteria.ListStaff();
int length =staffs== null ? 0 :
Math.Min(staffs.Length, ROW_COUNT);
for (int i = 0; i < length; i++) {
 System.Console.WriteLine(staffs[i]);

}
System.Console.WriteLine(length + "
Staff record(s) retrieved.");

SELECT * FROM staff WHERE age = 18 OR
age = 22 AND gender = 'm';

Programmer’s Guide for .NET Chapter 5 – Querying Database

5-12

The Result:

Criteria Class SQL Query

Staff[Name=Sam Age=22 Gender=m Dob=11/7/1983
12:00:00 AM ID=4]
1 Staff record(s) retrieved.

Retrieve all staff records whose name starts with "P" and age is less than 50, ordering by the name:

Criteria Class SQL Query

com.StaffCriteria staffCriteria = new
com.StaffCriteria();
staffCriteria.Name.Like("P%");
staffCriteria.Age.Lt(50);
staffCriteria.Name.Order(true);
staffCriteria.SetMaxResults(ROW_COUNT);
com.Staff[] staffs =
staffCriteria.ListStaff();
int length =staffs== null ? 0 :
Math.Min(staffs.Length, ROW_COUNT);
for (int i = 0; i < length; i++) {
 System.Console.WriteLine(staffs[i]);
}

System.Console.WriteLine(length + "
Staff record(s) retrieved.");

SELECT * From staff WHERE age < 50 AND
name LIKE 'p%' ORDER BY name;

The Result:

Criteria Class SQL Query

Staff[Name=Paul Age=12 Gender=m Dob=11/7/1993
12:00:00 AM ID=1]
Staff[Name=Peggy Age=45 Gender=f Dob=11/7/1960
12:00:00 AM ID=3]
2 Staff record(s) retrieved.

Generating Object-oriented .NET
Source from Relational Database 6

Programmer’s Guide for .NET Chapter 6 – Generating Object-Oriented .NET Source from Relational Database

6-2

Chapter 6 - Generating Object-Oriented .NET
Source from Relational Database

With DB Visual ARCHITECH (DB-VA), you can easily reverse relational database schema to Object-Oriented .NET source.
This feature can help user to develop a new application for existing data in relational database. And you do not need to write
SQL to insert, query, update or delete records in the database. In this chapter, we will focus on how to use wizards in DB-VA
to reverse the relational database schema to Object-Oriented .NET source.

In this chapter:

• Introduction
• Creating Sample Data
• Generating Code from Database Wizard
• Configuring Database
• Selecting Tables
• Configuring Generated Classes Details
• Specifying Code Generation Details
• Using Generated Sample

Introduction

In this chapter, we will use a MySQL database. You need to import schema to the MySQL database. This schema is used for
simulating an existing database schema that you will reverse in DB-VA into Class Diagram and Entity Relationship Diagram.
And you will generate Object-Oriented .NET source from the reversed model. Before you start to reverse the schema, you
should make sure you have the MySQL 5.0 Community Edition installed.

The MySQL 5.0 Community Edition can be downloaded on http://dev.mysql.com/downloads/mysql/5.0.html .

Creating Sample Data

1. Open the Command Prompt, Log on MySql database and create database called “store”.

mysql –u root

create database store;

exit;

Programmer’s Guide for .NET Chapter 6 – Generating Object-Oriented .NET Source from Relational Database

6-3

2. Use Command Prompt to change to the directory that contains the sample schema. The following is content of the
sample schema (store.ddl).

create table contacts (TOrderIndex int not null unique, contact varchar(255), TOrderID int not null, primary key
(TOrderIndex, TOrderID)) type=InnoDB;

create table customer (ID varchar(255) not null unique, name varchar(255), discount double, primary key (ID))
type=InnoDB;

create table orderline (ID int not null auto_increment unique, quantity int not null, OrderID int not null, primary
key (ID)) type=InnoDB;

create table product (ID int not null auto_increment unique, name varchar(255), OrderLineID int not null,
primary key (ID)) type=InnoDB;

create table torder (ID int not null auto_increment unique, OrderDate date, CustomerID varchar(255) not null,
primary key (ID)) type=InnoDB;

alter table contacts add index FK_Contacts_7690 (TOrderID), add constraint FK_Contacts_7690 foreign key
(TOrderID) references torder (ID);

alter table orderline add index FK_OrderLine_9672 (OrderID), add constraint FK_OrderLine_9672 foreign key
(OrderID) references torder (ID);

alter table product add index FK_Product_5274 (OrderLineID), add constraint FK_Product_5274 foreign key
(OrderLineID) references orderline (ID);

alter table torder add index FK_TOrder_4869 (CustomerID), add constraint FK_TOrder_4869 foreign key
(CustomerID) references customer (ID);

3. Type the following command to import the schema to the store database.

mysql –u root store < store.ddl

4. Log on MySql database and list the tables in the store database.

mysql -u root store

show tables;

Programmer’s Guide for .NET Chapter 6 – Generating Object-Oriented .NET Source from Relational Database

6-4

Generating Code from Database Wizard

1. New Project in DB-VA called “Store”.

2. From the menu, select Tools > Object-Relational Mapping (ORM) > Wizard… to open the Wizard.

3. Select C# in Language and select Generate Code from Database on the Wizard Welcome page and then click Next
>.

Programmer’s Guide for .NET Chapter 6 – Generating Object-Oriented .NET Source from Relational Database

6-5

Configuring Database

In this step, you need to select the database and enter the database information, then DB-VA will use this information to get the
database schema to reverse.

1. Select MySQL (MySQL Connector/Net 1.0) for Driver option.

2. Download or browse the suitable Driver and Adapter file for your selected driver.

For Driver and Adapter Driver file, you can click the Driver button to select Download Driver and Adapter,
Download, Update, and Default Driver , DB-VA helps you to download the most up-to-date driver and adapter
driver according to the Driver field information. You can also select Browse… to select a driver and adapter
driver file in your computer.

After downloaded the driver file, <<MySQL Connector/Net 1.0.6>> will be shown on Driver file and <<MySQL
Connector/J 3.1.10>> will be shown on Adapter file.

Programmer’s Guide for .NET Chapter 6 – Generating Object-Oriented .NET Source from Relational Database

6-6

3. Fill in the Connection String information of your database.

For Connection String, the Connection URL template for different databases is shown, enter the information for
connecting the database.

The default Connection URL template for MySQL is:

Server=<host_name>;Database=<database_name>;User
ID=<username>;Password=<password>;CharSet=<charset>

A sample Connection URL for MySQL is:

Server=localhost;Database=store;User ID=root;

4. Click Test Connection to test the database connection.

If success to connect with database the Connection Successful dialog box will show, otherwise the Connection
Exception dialog will show.

5. Click Next > to select tables.

Selecting Table

DB-VA uses your previously configured database settings to connect to the database. You can select the database tables which
you want to generate persistent classes for. In this example, we will select all the database tables to reverse. You can deselect
tables by using the list of buttons between the list of Available Tables and Selected Tables.

Programmer’s Guide for .NET Chapter 6 – Generating Object-Oriented .NET Source from Relational Database

6-7

• Add Selected

Add the selected table from Available Tables to Selected Tables.

• Remove Selected

Remove the selected table from Selected Tables to Available Tables.

• Add All

Add all tables from Available Tables to Selected Tables.

• Remove All

Remove all tables from Selected Tables to Available Tables.

Configuring Generated Class Details

After selecting tables, you will be directed to the Class Details Configuration pane. In this pane, you can define the class details
for generating code. DB-VA generates persistent classes based on the information you defined here. You can edit the class
details by double-clicking the field. The following is a sample of modifying the Customer class name, association role name
and attribute, etc…

1. Type the package name called “store”. A package will be created to store the generated persistent code. If the package
name is not defined, you will be prompted by a dialog box warning you the classes will be generated in the default
package.

2. Change Customer class name to Buyer. You can edit the class name which will be used as the name of the generated
persistent code for a corresponding table.

3. Change the first character of the Buyer class’s Association Role Name from upper case to lower case. You can edit
the role name for a reference in the class.

Programmer’s Guide for .NET Chapter 6 – Generating Object-Oriented .NET Source from Relational Database

6-8

4. Modify the Buyer class’s Attribute from ID to custID.

5. Click Custom Code Style button to open Custom Code Style Setting dialog box. You can modify the prefix or
suffix of the Class, Attribute and Role Name.

For Type, select the type of Class details - either Class, Attribute or Role Name (PK), that you want to apply code
style.

For Prefix/Suffix , select either Prefix or Suffix to be added or removed.

For Add/Remove option, select the option for the action of code style to be applied.

For the textbox, enter the word for either prefix or suffix.

For Scope, select the scope of the code style to be applied to, either All or Selected.

The table below shows the result of applying code styles.

Code Style Before Applying After Applying

Add Prefix (E.g. pre_) Item pre_Item

Remove Prefix (E.g. pre_) pre_Item Item

Add Suffix (E.g. _suf) Item Item_suf

Remove (E.g. _suf) Item_suf Item

Programmer’s Guide for .NET Chapter 6 – Generating Object-Oriented .NET Source from Relational Database

6-9

Specifying Code Generation Details

This is the final step to specify .NET code generation details, you can select the location of the code generation, C# Assembly
Name, etc… according to your requirements.

• Error Handling

Select the way to handle errors. The possible errors include PersistentException, ADOException.

• Return false/null - It returns false/null in the method to terminate its execution.
• Throw PersistentException - It throws a PersistentException which will be handled by the caller.

• Exception Handling
• Do not Show - It hides the error message.
• Print to Error Stream – It prints the error message to the Error Stream.
• Print to log4net - It prints the error message to the log4net library.

• Lazy Collection Initialization.

Check this option to avoid the associated objects from being loaded when the main object is loaded. Unchecking
this option will result in loading the associated objects when the main object is loaded. If you enabled (checked)
lazy collection initialization, associated objects (1 to many) will not be loaded until you access them (e.g.
getFlight(0)). Enabling this option can usually reduce more then 80% of the database loading.

• Output Path

Specify the location of C# persistent code generation.

• Association Handling

Select the type of association handling to be used, either Smart or Standard.

Programmer’s Guide for .NET Chapter 6 – Generating Object-Oriented .NET Source from Relational Database

6-10

• Smart - With smart association handling, when you update one end of a bi-directional association, the
generated persistent code is able to update the other end automatically. Besides, you do not need to cast the
retrieved object(s) into its corresponding persistence class when retrieving object(s) from the collection.

• Standard - With standard association handling, you must update both ends of a bi-directional association
manually to maintain its consistency. Besides, casting of object(s) to its corresponding persistence class is
required when retrieving object(s) from the collection.

• Persistent API

Select the type of persistent code to be generated, either Static Methods, Factory Class, DAO or POJO.

• Static Method - Client can create, retrieve, and persist the PersistentObject directly.
• Factory Class - Create FactoryObject class for client to create and retrieve PersistentObject. Client still can

persist the PersistentObject directly.
• DAO - Client uses the PersistentObjectDAO class to create, retrieve and persist the PersistentObject.
• POJO - Client uses the PersistentManager to retrieve and persist the PersistentObject.

• Create Criteria

You can check the Generate Criteria option to generate the criteria class for each ORM Persistable class. The
Criteria is used for querying the database in object-oriented way (please refer to chapter 9 for more details about
the criteria)

• Sample

Sample files, including C# application sample and C# project file for Visual Studio .NET 2003 are available for
generation. The generated sample files guide you through the usage of the C# persistence class. You can check
the options to generate the sample files for reference.

You need to generate the sample and check the create C# project option so that you can modify the sample to
execute the generated C# persistence class in Visual Studio .NET 2003.

You have to select All Properties of Override toString Method when you execute the list data
sample so that you can read the persistent object information.

Click Finish, the Generate ORM Code/Database dialog box appears showing the progress of code generation. Click Close
when the generation is complete.

Programmer’s Guide for .NET Chapter 6 – Generating Object-Oriented .NET Source from Relational Database

6-11

A class diagram and an entity relationship diagram will be generated automatically and added to your project. The generated
persistent C# code and the required resources will be generated to the specified output path.

The Class Diagram:

The ER Diagram:

Generated C# code:

Using the Generated Sample

You have selected to generate the sample for the persistent code, so you can modify the sample code slightly to test and
execute the .NET code. If you have entered the package name for the generated Java code, the sample code will be generated in
the ormsamples package. The ormsamples package contains the following files:

Programmer’s Guide for .NET Chapter 6 – Generating Object-Oriented .NET Source from Relational Database

6-12

Class File Function

CreateStoreData.cs Create persistent objects and save objects to database.

CreateStoreDatabaseSchema.cs Export the schema to database.

DeleteStoreData.cs Delete persistent objects from the database.

DropStoreDatabaseSchema.cs Remove the schema in the database.

ListStoreData.cs List all the persistent objects in database.

RetrieveAndUpdateStoreData.cs Get the persistent object from the database and modify the object attributes.

We will demonstrate how to modify the CreateStoreData.cs to create the persistent objects and relationships from the generated
C# code and save the persistent object to database.

The Original CreateStoreData.cs file, CreateData() method:

private void CreateData() {
 PersistentTransaction t = store.StorePersistentManager.Instance().GetSession().BeginTransaction();
 try {
 store.Contacts lstoreContacts = store.ContactsFactory.CreateContacts();
 // Initialize the properties of the persistent object
 lstoreContacts.Save();
 store.Buyer lstoreBuyer = store.BuyerFactory.CreateBuyer();
 // Initialize the properties of the persistent object
 lstoreBuyer.Save();
 store.Orderline lstoreOrderline = store.OrderlineFactory.CreateOrderline();
 // Initialize the properties of the persistent object
 lstoreOrderline.Save();
 store.Product lstoreProduct = store.ProductFactory.CreateProduct();
 // Initialize the properties of the persistent object
 lstoreProduct.Save();
 store.Torder lstoreTorder = store.TorderFactory.CreateTorder();
 // Initialize the properties of the persistent object
 lstoreTorder.Save();
 t.Commit();
 }
 catch(Exception e) {
 t.RollBack();
 Console.WriteLine(e);
 }

}

Programmer’s Guide for .NET Chapter 6 – Generating Object-Oriented .NET Source from Relational Database

6-13

The modified CreateStoreData.cs file, CreateData() method:

public class CreateStoreData {
 private void CreateData() {
 PersistentTransaction t = store.StorePersistentManager.Instance().GetSession().BeginTransaction();
 try {
 //create persistent object instance
 //create Contacts
 Console.WriteLine("Create persistent objects.");
 store.Contacts lstoreContacts = store.ContactsFactory.CreateContacts();
 lstoreContacts.Contact = "contact : 12345678";
 lstoreContacts.TOrderIndex = 1;

 //create Buyer
 store.Buyer lstoreBuyer = store.BuyerFactory.CreateBuyer();
 lstoreBuyer.Discount = 0.9;
 lstoreBuyer.Name = "Judy";
 lstoreBuyer.CustID = "judy";

 //create Torder
 store.Torder lstoreTorder = store.TorderFactory.CreateTorder();
 lstoreTorder.OrderDate = DateTime.Now;
 //create Orderline
 store.Orderline lstoreOrderline = store.OrderlineFactory.CreateOrderline();
 lstoreOrderline.Quantity = 10000;

 //create Product
 store.Product lstoreProduct = store.ProductFactory.CreateProduct();
 lstoreProduct.Name = "Chocolate";

 //create relationship
 Console.WriteLine("Create the relationships between persistent objects.");
 lstoreTorder.Customer = lstoreBuyer;
 lstoreContacts.TOrder = lstoreTorder;
 lstoreOrderline.Order = lstoreTorder;
 lstoreProduct.OrderLine = lstoreOrderline;
 //save the persistent objects
 Console.WriteLine("Save the persistent objects.");
 lstoreBuyer.Save();
 t.Commit();
 }
 catch(Exception e) {
 t.RollBack();
 Console.WriteLine(e);
 }
 }

Programmer’s Guide for .NET Chapter 6 – Generating Object-Oriented .NET Source from Relational Database

6-14

Uncomment the line CreateStoreData.Main(args); in SampleCenterControl.cs and modify it to execute the generated sample.
The persistent objects will be created in database.ã€€ You can execute ListStoreData.java to show the information of all the
created persistent objects.

The ListStoreData.cs file, listTestData() method:

public void ListData() {
 System.Console.WriteLine("Listing Contacts...");
 store.Contacts[] lstoreContactss = store.ContactsFactory.ListContactsByQuery(null, null);
 int length = Math.Min(lstoreContactss.Length, ROW_COUNT);
 for (int i = 0; i < length; i++) {
 System.Console.WriteLine(lstoreContactss[i]);
 }
 System.Console.WriteLine(length + " record(s) retrieved.");
 System.Console.WriteLine("Listing Buyer...");
 store.Buyer[] lstoreBuyers = store.BuyerFactory.ListBuyerByQuery(null, null);

 length = Math.Min(lstoreBuyers.Length, ROW_COUNT);
 for (int i = 0; i < length; i++) {
 System.Console.WriteLine(lstoreBuyers[i]);
 }
 System.Console.WriteLine(length + " record(s) retrieved.");
 System.Console.WriteLine("Listing Orderline...");
 store.Orderline[] lstoreOrderlines = store.OrderlineFactory.ListOrderlineByQuery(null, null);
 length = Math.Min(lstoreOrderlines.Length, ROW_COUNT);
 for (int i = 0; i < length; i++) {
 System.Console.WriteLine(lstoreOrderlines[i]);
 }
 System.Console.WriteLine(length + " record(s) retrieved.");
 System.Console.WriteLine("Listing Product...");
 store.Product[] lstoreProducts = store.ProductFactory.ListProductByQuery(null, null);
 length = Math.Min(lstoreProducts.Length, ROW_COUNT);
 for (int i = 0; i < length; i++) {
 System.Console.WriteLine(lstoreProducts[i]);
 }
 System.Console.WriteLine(length + " record(s) retrieved.");
 System.Console.WriteLine("Listing Torder...");
 store.Torder[] lstoreTorders = store.TorderFactory.ListTorderByQuery(null, null);
 length = Math.Min(lstoreTorders.Length, ROW_COUNT);
 for (int i = 0; i < length; i++) {
 System.Console.WriteLine(lstoreTorders[i]);
 }

 System.Console.WriteLine(length + " record(s) retrieved.");

}

Programmer’s Guide for .NET Chapter 6 – Generating Object-Oriented .NET Source from Relational Database

6-15

Uncomment the ListStoreData.Main(args); in SampleCenterControl.cs and execute the sample.

The result of execute ListStoreData.cs:

Listing Contacts...

Contacts[TOrderIndex=1 Contacts=contact : 12345678 TOrder.Persist_ID=1]

1 record(s) retrieved.

Listing Buyer...

Buyer[CustID=judy Name=Judy Discount=0.9 torder.size=1]

1 record(s) retrieved.

Listing Orderline...

Orderline[ID=1 Quantity=10000 Order.Persist_ID=1 Product.size=1]

1 record(s) retrieved.

Listing Product...

Product[ID=1 Name=Chocolate OrderLine.Persist_ID=1]

1 record(s) retrieved.

Listing Torder...

Torder[ID=1 OrderDate=2006/1/3 ä¸Šå� ˆ 12:00:00 Customer.Persist_ID=judy Contacts.

size=1 Orderline.size=1]

1 record(s) retrieved.

Programmer’s Guide for .NET Chapter 6 – Generating Object-Oriented .NET Source from Relational Database

6-16

Programming in VB.NET 7

Programmer’s Guide for .NET Chapter 7 – Programming in VB.NET

7-2

Chapter 7 - Programming in VB.NET

DB Visual ARCHITECT (DB-VA) can generate C#.NET source code so you can implement your application by C#
programming language directly but you also can choose another language (VB.NET or C++) based on your taste in the .NET
Framework. DB-VA generates DLL files and persistent libraries that can be referenced by .NET projects of language other
than C#.

In this chapter:

• Introduction
• Generating DLL file
• Creating VB.NET Project
• Adding Referenced Project
• Working with the Generated Code and Persistent Library
• Running the Application

Introduction

Visual Basic .NET (VB.NET) is an Object-Oriented computer language that can be viewed as an evolution of Microsoft’s
Visual Basic (VB) implemented on the Microsoft .NET framework. The .NET Framework contains a virtual machine called
Common Intermediate Language (CIL). Simply put, programs are compiled to produce CIL and the CIL is distributed to user
to run on a virtual machine. VB.NET, C++, C# compilers are available from Microsoft for creating CIL. In DB-VA you can
generate C# persistent source code and DLL files, so you can reference the DLL file and Persistent Library in Visual
Studio .NET 2003 and develop the VB.NET application.

In the following section, you will develop a VB.NET application. The application is exactly the same as the one in Chapter 4 –
Developing Standalone .NET Application sample but this time you use VB.NET instead of C# for development. You need to
download Chapter 4 sample application because it contains the DLL file and persistent libraries for your VB.NET project.

Generating DLL File

1. From the menu bar, select Tools > Object-Relational Mapping (ORM) > Generate Database… to open the
Database Code Generation dialog box.

2. Check the Compile to DLL option to generate the DLL file.
• Compile to DLL

By checking this option, DB-VA will generate DLL files which can be referenced by .NET projects
of language other than C#. DB-VA generates a batch file for this DLL file at the same time. You can
modify the configure file (hibernate.cfg.xml) manually and use the batch file to recompile and build
an up-to-date DLL file for referenced project.

Programmer’s Guide for .NET Chapter 7 – Programming in VB.NET

7-3

Creating VB.NET Project

1. Open Microsoft Visual Studio .NET 2003.
2. Select File > New > Project … from the menu.

3. Select the Project Types as Visual Basic Projects and Templates as Windows Application and enter the Name and
Location for the new application.

4. The School System Project is created.

Adding Referenced Project

1. Right click References under the Standalone School System VB.NET project and select Add Reference… to add the
C# example DDL file and persistent libraries.

Programmer’s Guide for .NET Chapter 7 – Programming in VB.NET

7-4

2. Click Browse… on the Add Reference dialog box to select the folder of the downloaded C# standalone application
sample. Select C# sample folder/bin/SchoolSystem.dll and all libraries in C# sample folder/lib.

Working with the Generated Code and Persistent Library

Both the C# and VB.NET languages are built on the .NET framework. Both languages accomplish the same thing using
different language syntax. In this section, we will point out some examples of using the generated code and persistent library.

• Importing DLL and Persistent Libraries namespace for the Class.

VB.NET C#

Imports school

Imports Orm

using school;

using Orm;

• Creating PersistentTransaction when manipulating the database.

VB.NET C#

Dim t As PersistentTransaction =
SchoolSystemPersistentManager.Inst
ance.GetSession.BeginTransaction

PersistentTransaction t =
SchoolSystemPersistentManager.Instance
().GetSession().BeginTransaction();

Programmer’s Guide for .NET Chapter 7 – Programming in VB.NET

7-5

• Creating Object and Save to Database
1. From menu bar, select File > Register Student to open the Add Student dialog box.

2. Fill in the student information. Click OK to create the new Student record in School System.

3. After click OK, the system create the new Student persistent object.

Private Sub okButton_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles okButton.Click
 If (loginIDTextBox.Text.Length = 0 Or
passwordTextBox.Text.Length = 0) Then
 MessageBox.Show("Login id or password missi ng")
 Return
 End If
 Dim t As PersistentTransaction =
SchoolSystemPersistentManager.Instance.GetSession.B eginTransaction
 Try
 If (_userType = CREATE_TEACHER) Then
 User = TeacherFactory.CreateTeacher()
 ElseIf (_userType = CREATE_STUDENT) Then
 User = StudentFactory.CreateStudent()

 End If

Source File : Standalone School System VB.NET\RegisterDialog.vb

4. Set the student information from the text fields value to the Student object.

User.Password = passwordTextBox.Text
User.LoginID = loginIDTextBox.Text
If (TypeOf User Is Teacher) Then
 CType(User, Teacher).Email = emailTextBox.Text

End If

Source File : Standalone School System VB.NET\RegisterDialog.vb

Programmer’s Guide for .NET Chapter 7 – Programming in VB.NET

7-6

5. Call Save() method of Student Persistent Object and Commit() method of PersistentTransaction., then the
new Student object will be saved to the database. If any error occurred during the transaction, you can call
the Rollback() method to cancel the proposed changes in a pending database transaction

 User.Save()
 t.Commit()
 DialogResult = DialogResult.OK
 Close()
Catch ex As Exception
 Console.WriteLine(ex.InnerException.Message)
 DialogResult = DialogResult.Cancel
 t.RollBack()
End Try

Source File : Standalone School System VB.NET\RegisterDialog.vb

• Query Object from Database

After the user login the School System, the system query different Course objects from the database according to
user role. If the user is a student, the system shows all the courses. The student can select and register the course.
If the user is a teacher, the system shows courses are created by that teacher. The teacher can update or delete the
course in the system.

Student Login:

Teacher Login:

Programmer’s Guide for .NET Chapter 7 – Programming in VB.NET

7-7

1. Query the course objects when user login. When Student login, the system will call ListCourseByQuery()
method in CourseFactory to get all available courses. When Teacher login, the system will call courses
collection variable in Teacher object.

Private Sub UpdateTreeView()
 Dim lCourses() As Course
 If (TypeOf CurrentUser Is Student) Then
 lCourses = CourseFactory.ListCourseByQuery(Nothing , Nothing)
 ElseIf (TypeOf CurrentUser Is Teacher) Then
 lCourses = CType(CurrentUser, Teacher).courses.ToArray()
 End If
 ...
End Sub

Source File : Standalone School System VB.NET \SchoolSystemForm.vb

• Update Object and Save to Database

You can modify the user information and update the record in database. After the user login, the User object is
stored in the application, so you can set new information to the user object and update the database record.

1. From the menu bar, select User > Modify User Information to open the Modify User Information dialog
box.

2. Enter new user information and click OK to update the User record.

Programmer’s Guide for .NET Chapter 7 – Programming in VB.NET

7-8

3. Update the information for the User object by setting password, name and email address.

Private Sub okButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles okButton.Click
 If (nameTextBox.Text.Length = 0 Or passwordTextBox.Text.Length =
0) Then
 MessageBox.Show("Missing login id and passw ord")
 Else
 Dim t As PersistentTransaction =
SchoolSystemPersistentManager.Instance.GetSession.B eginTransaction
 Try
 _user.Name = nameTextBox.Text
 _user.Password = passwordTextBox.Text
 If (TypeOf _user Is Teacher) Then
 CType(_user, Teacher).Email = emailTextBox.Text
 End If
 _user.Save()
 DialogResult = DialogResult.OK

 t.Commit()
 Catch ex As Exception
 DialogResult = DialogResult.Cancel
 t.RollBack()
 End Try
 End If

 Close()
End Sub

Source File : Standalone School System VB.NET\ModifyUserDialog.cs

• Delete Object in Database

Teacher can create course for students to register, and they can cancel courses in the system. They only need to
click delete button of the course then the course information will be deleted in the database and all its
relationships with registered students will be removed.

1. Teacher can create the course by clicking the Add Course button, fill in Course name and Description.

Programmer’s Guide for .NET Chapter 7 – Programming in VB.NET

7-9

2. Student can register the course by clicking the Register button.

3. The teacher can view how many students registered his course, and he can delete courses in the system.

4. Click Delete of a course then it will trigger the delButton_Click() method .

Private Sub deleteButton_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles deleteButton.Click
 If (MessageBox.Show("Delete", "Delete",
MessageBoxButtons.OKCancel).Equals(DialogResult.OK)) Then

Source File : Standalone School System VB.NET\CoursePanel.vb

5. Call deleteAndDissociate() method to delete the course object and remove the relationships of students and
teachers with it.

 Dim t As PersistentTransaction =
SchoolSystemPersistentManager.Instance().GetSession ().BeginTransactio
n()
 Try
 _CourseNode.Course().DeleteAndDissociat e()
 _CourseNode.Remove()
 t.Commit()
 Catch ex As Exception
 Console.WriteLine(ex.InnerException.Mes sage)
 t.RollBack()
 End Try
 End If
End Sub

Source File : Standalone School System VB.NET\CoursePanel.vb

Programmer’s Guide for .NET Chapter 7 – Programming in VB.NET

7-10

Running Application

The VB.NET project is implemented in Visual Studio .NET 2003. To execute the VB.NET Application, select Debug > Start
(F5) from the menu bar.

Programming in C++.NET 8

Programmer’s Guide for .NET Chapter 8 – Programming in C++.NET

8-2

Chapter 8 - Programming in C++ .NET

DB Visual ARCHITECT (DB-VA) can generate C#.NET source code so you can implement your application by C#
programming language directly but you can also choose another language (VB.NET or C++) based on your taste in the .NET
Framework. DB-VA generates DLL file and persistent libraries that can be referenced by .NET projects of language other than
C#.

In this chapter:

• Introduction
• Generating DLL file
• Creating C++ Project
• Adding Referenced Project
• Working with the Generating Code and Persistent Library
• Running the Application

Introduction

C++ is an Object-Oriented Programming (OOP) language that is viewed by many as the best language for creating large-scale
applications. The .NET Framework contains a virtual machine called Common Intermediate Language (CIL). Simply put,
programs are compiled to produce CIL and the CIL is distributed to user to run on a virtual machine. C++, VB.NET, C#
compilers are available from Microsoft for creating CIL. In DB-VA you can generate C# persistent source code and DLL file,
so you can reference the DLL file and persistent library in Visual Studio .NET 2003 and develop the C++ application.

In the following section, you will develop a C++ application. The application is exactly same as the one in Chapter 4 –
Developing Standalone .NET Application sample, but this time you use C++ instead of C# for development. You need to
download the Chapter 4 sample application because it contains DLL file and persistent libraries for your C++ project.

Generating DLL File

1. From the menu bar, select Tools > Object-Relational Mapping (ORM) > Generate Database… to open the
Database Code Generate dialog box.

2. Check the Compile to DLL option to generate the DLL file.
• Compile to DLL

By checking this option, DB-VA will generate DLL files which can be referenced by .NET projects
of language other than C#. DB-VA generates batch file for the DLL file at the same time. You can
modify the configuration file (hibernate.cfg.xml) manually and use the batch file to recompile and
build an up-to-date DLL file for referenced project.

Programmer’s Guide for .NET Chapter 8 – Programming in C++.NET

8-3

Creating C++ Project

1. Open Microsoft Visual Studio .NET 2003.
2. Select File > New > Project … from the menu.

3. Select Project Types as Visual C++ Projects and Templates as Windows Form Application (.NET) and Location for
the new application.

4. The School System Project is created.

5. Right click Standalone School System cpp Project, select Add > Add New Item… from the popup menu.

Programmer’s Guide for .NET Chapter 8 – Programming in C++.NET

8-4

6. Select Category as Visual C++, Template Windows Form (.NET) and enter the name for the form called
“SchoolSystemForm”. This is the start point for the application.

7. Append the following content to the SchoolSystemForm.cpp file (Source files/SchoolSystemForm.cpp). This is the
main method for C++ Application to execute.

#include <windows.h>

using namespace StandaloneSchoolSystemcpp;

int APIENTRY _tWinMain(HINSTANCE hInstance,
 HINSTANCE hPrev Instance,
 LPTSTR lpCmdLin e,
 int nCmdShow)
{
 System::Threading::Thread::CurrentThread->Apart mentState =
System::Threading::ApartmentState::STA;
 Application::Run(new SchoolSystemForm());
 return 0;

}

8. Remove the Form1.cpp and Form1.h files.

Adding Referenced Project

1. Right click References under the Standalone School System C++ project and select Add Reference…. Reference the
C# example DDL file and persistent libraries for developing the C++ application.

Programmer’s Guide for .NET Chapter 8 – Programming in C++.NET

8-5

2. Click Browse… on the Add Reference dialog box to select the folder of the downloaded C# standalone application
sample. Select C# sample folder/bin/SchoolSystem.dll and all libraries in C# sample folder/lib.

Working with the Generating Code and Persistent Library

C# and C++ are both languages that built on the .NET framework and they both accomplish the same thing, just using different
language syntax. In this section, you will learn how to work with Generate Code and Persistent Library with C++ language.

• Creating Object and Save to Database
1. From the menu bar, select File > Register Student to open the Add Student dialog box.

2. Fill in the student information. Click OK to create the new Student record in School System.

Programmer’s Guide for .NET Chapter 8 – Programming in C++.NET

8-6

3. After that, the system creates the new Student Persistent object.

private : System::Void okButton_Click(System::Object *sende r,
System::EventArgs *e)
{
 if (loginIDTextBox->Text->Length == 0 || passwordTextB ox->Text-
>Length == 0){
 MessageBox::Show("Login id or password miss ing");
 return ;
 }
 PersistentTransaction *t =
SchoolSystemPersistentManager::Instance()->GetSessi on()-
>BeginTransaction();
 try {ã€€ã€€ã€€ ã€€ã€€ã€€
 if (userType == CREATE_TEACHER){
 createdUser = TeacherFactory::CreateTea cher();
 } else {
 createdUser = StudentFactory::CreateStudent ();

 }

Source File : Standalone School System cpp \RegisterDialog.h

4. Set the student information from the text fields value to the Student Object

createdUser->set_Name(userNameTextBox->Text);
createdUser->set_Password(passwordTextBox->Text);
createdUser->set_LoginID(loginIDTextBox->Text);
if (dynamic_cast <Teacher*>(createdUser)){
 dynamic_cast <Teacher*>(createdUser)->set_Email(emailTextBox->Te xt);

}

Source File : Standalone School System cpp \RegisterDialog.h

5. Call Save() method of Student Persistent Object and Commit() method of PersistentTransaction, then the
new Student object will be saved in database. If there are any errors occurred during the transaction, you can
call the Rollback() method to cancels the proposed changes in a pending database transaction

 createdUser->Save();
 this ->set_CreatedUser(createdUser);
 DialogResult = DialogResult::OK;
 t->Commit();
 Close();
} catch (Exception *ex){
 Console::WriteLine(ex->InnerException->Message) ;
 DialogResult = DialogResult::Cancel;
 t->RollBack();
}

Source File : Standalone School System cpp \RegisterDialog.h

Programmer’s Guide for .NET Chapter 8 – Programming in C++.NET

8-7

• Querying Object from Database

After the user login the School System, the system queries different Course objects from the database according
to user role. If the user is a student, the system shows all the available courses. The student can select and register
the course. If the user is teacher, the system shows the courses that are created by that teacher. The teacher can
update or delete the course information in system.

Student Login:

Teacher Login:

1. Query the course objects when user login. When Student login, the system will call ListCourseByQuery()
method in CourseFactory to get all available courses. When Teacher login, the system will call courses
collection variable in Teacher object.

void updateTreeView(void){
 Course *courses[];
 if (dynamic_cast <Student*>(currentUser)){
 courses = CourseFactory::ListCourseByQuery(NULL, NULL);
 } else {
 courses = dynamic_cast <Teacher*>(currentUser)->courses-
>ToArray();
 }
 ...
}

Source File : Standalone School System cpp \SchoolSystemForm.h

• Updating Object and Saving to Database

You can modify the user information and update the record in database. After the user login, the User object is
stored in the application, so you can set new information in the user object and update the database record.

Programmer’s Guide for .NET Chapter 8 – Programming in C++.NET

8-8

1. From the menu bar, select User > Modify User Information to open the Modify User Information dialog
box.

2. Enter new user information and click OK to update the User record.

3. Update the information for the User object includes password, name and email address.

private : System::Void okButton_Click(System::Object *sende r,
System::EventArgs *e)
{
 if (nameTextBox->Text->Length == 0 || passwordTextBox- >Text- >Length ==
0){
 MessageBox::Show("Missing name or password");
 return ;
 } else {
 PersistentTransaction *t =
SchoolSystemPersistentManager::Instance()->GetSessi on()-
>BeginTransaction();
 try {
 user->set_Name(nameTextBox->Text);
 user->set_Password(passwordTextBox->Tex t);
 if (dynamic_cast <Teacher*>(user)){
 (dynamic_cast <Teacher*>(user))->set_Email(emailTextBox-
>Text);
 }
 user->Save();
 DialogResult = DialogResult::OK;
 t->Commit();
 } catch (Exception *ex){
 DialogResult = DialogResult::Cancel;
 t->RollBack();
 }
 }
}

Source File : Standalone School System cpp\ModifyUserDialog.h

Programmer’s Guide for .NET Chapter 8 – Programming in C++.NET

8-9

• Deleting Object in Database

Teacher can create courses for students to register and they can cancel the course in the system. They only need to
click delete button of the course then the course information will be deleted in the database and all its
relationships with register students will be removed.

1. Teacher can create the course by clicking the Add Course button, fill in Course name and Description.

2. Student can register the course by clicking the Register button.

3. The teacher can view how many students registered his course, and he can delete the course in the system.

4. Click Delete of a Course then it will trigger the deleteButton_Click() method.

private : System::Void deleteButton_Click(System::Object *s ender,
System::EventArgs *e)
{
 if (MessageBox::Show("Delete", "Delete", MessageBoxBut tons::OKCancel)
== DialogResult::OK){

Source File : Standalone School System cpp\SchoolSystemform.h

Programmer’s Guide for .NET Chapter 8 – Programming in C++.NET

8-10

5. Call deleteAndDissociate() method to delete the course object and remove the relationships of student and
teacher with it.

 PersistentTransaction *t =
SchoolSystemPersistentManager::Instance()->GetSessi on()-
>BeginTransaction();
 try {
 selectedNode->get_Course()->DeleteAndDis sociate();
 selectedNode->Remove();
 t->Commit();
 } catch (Exception *ex){
 Console::WriteLine(ex->InnerException-> Message);
 t->RollBack();
 }
 }
}

Source File : Standalone School System cpp\SchoolSystemForm.h

Running the Application

To execute the C++ application, select Debug > Start (F5) on the menu bar Visual Studio .NET 2003.

