Getting Started With UML Class
Modeling

An Oracle White Paper
April 2005

ORACLE

Getting Started With UML Class Modeling

INTRODUCTION ..o snses 3
WHAT IS CLASS MODELING ..o 3
CLASSES, ATTRIBUTES AND OPERATIONSccccoenivnieinirricrnnans 4
GENERALIZATION ...t 4
ASSOCIATIONS ... 5
Aggregation and COMPOSILIONvuruvviuieeriiriiiieieiisiereceeseise s 7
More 0N AGEIE@aAtioN......cuiuiuiuiiieeiiiiiieieicisee s 7
More 0n COMPOSIIONvviiiiiiiiiccicrcce s 7
Composition Of AZEIEGAtIONTccuvviiucuiiriiieieiriieessiiees e 8
OTHER ARTEFACTS AND CONCEPTS.cccconiiiiniininicinieaes 8
ADSEIACE CIASSES .veieviieiiiicic s 8
INEEfACE v 9
CONSLANT .ottt 9
ADVANCED PROPERTIES........cccoooiiiiiiiiiinisicnens 10
Advanced Attribute Properties......ooucvviiciiiniiciininieenicceviceenns 10
Advanced Operation Properties ... 12
DEVELOPING IN ITERATIONS.......cccocviiiiiiniiccceiene 12
Domain Model ... 12
ANALYSIS MOAEL ...oviiiiiiiccccicceeee e 13
Analysis Classes StEEOLYPEScvurruiuiueriiriiiieiiiiiiereiieereiseesseseenens 13
Creating Analysis CIassescooieiirinieiiiiniciiiniieeiie e 14
Design MOdel ... 15
UML CLASSES VERSUS ENTITY RELATIONSHIP MODEL........ 16
MORE INFORMATIONcooiiiiiiininiiisiicscisisssscssssessseens 17

Getting Started With UML Class Modeling Page 2

A class is a definition of objects that share
the same properties, relationships and
behavior. An object is an instance of a

class. The properties of a class are called
attributes and the behavior is expressed in
operations.

Getting Started With UML Class Modeling

INTRODUCTION

UML class modeling is one of the major UML modeling techniques. It is typically
used to detail use cases (see also the white paper “Getting Started With Use Case
Modeling”) and to provide a first-cut of the design of a system.

This paper discusses the modeling elements that can be used in a UML class model
and describes how class models can be developed iteratively. For those familiar
with Structured Analysis a comparison is made with Entity Relationship Modeling.

WHAT IS CLASS MODELING

The words “class” and “object” are often used as if they are the same, but actually
they are not. An object is someone or something, like the person “John” or this
document. It can be concrete like “The Eiffel Tower” or abstract like “France”.
Formally put, an object is something with properties, relationships, behavior and
an identity.

A class is a definition of objects that share the same kind of properties,
relationships and behavior, like the class Employee may define the properties
“name”, “age” and “employee number” and may define a relationship with the
class Department. An object is a specific instance of a class, like “John” may be

an instance of the class Employee.

In the context of system development we define classes with properties and
behavior that are relevant for the System under Discussion (SuD). Class Modeling
is the task of specifying these classes using a specific language in which the
properties are called attributes, the relations ate called associations and behavior
is defined as operations.

UML class modeling is platform independent, so it is not about Java, nor C#. At
some point classes are transformed to a platform specific technology, which may
be Java classes, Enterprise Java Beans, ADF Business Components and so on.
However, as will be discussed later, there are there situations in which it makes
sense to let the UML class model anticipate constraints of the technology that is
going to be used.

Getting Started With UML Class Modeling Page 3

The names of classes start with an
uppercase. The names of attributes,
operations and arguments of operations
start with a lower case. There are no
spaces or underscores between words,
while each new word starts with an

uppercase.

CLASSES, ATTRIBUTES AND OPERATIONS

A class is drawn as a rounded rectangle like in the figure on

Employee
the right. Mot - Dot
name : Sting
. . zalany : Maney
The rectangle can be divided into three compartments, ST T
with the name in the upper, the attributes in the middle
and operations in the lower compartment. The Employee class

There are several UML concepts that are drawn using the rectangle shape. The
exact concept is displayed using a guillemet quoted name (<< >>). By default
JDeveloper shows the class concept in the diagram as “<<uml class>>", as well as

the package, for example as “mycompany: :mypackage: :model”.

However, as the class is the most common concept, displaying this keyword is
often suppressed. Therefore, consider configuring JDeveloper to hide the concept
name and the package of classes, to prevent them from cluttering the diagram.
Hiding the concept name and package can be done in the menu by going to Tools
-> Preferences, expand the nodes Diagrams -> Diagram -> UML Class -> UML
Class, select Shape and uncheck Show Package and Show Stereotype. You can also
set this for individual shapes by right-clicking them and select Display Properties
from the context menu. If you want you can do the same to hide the operation and

attributes sections for classes that do not have operations or attributes.

It is a de facto standard to write class names with no spaces or underscores
between words, each word starting with an uppercase, as in “OrderLine”. Attribute
names and operations start with lower case, while each new word starts with

uppercase, as in “contactName”.

An attribute has a type, which is put after the name, as in “contactName : String””.
Operations can take arguments and may return an object of a specific type. In
“doSomething(int someArgument) : String”, an operation with name
“doSomething” takes an argument with name “someArgument” of the type “int”
and returns an object of the type “String”. When no object is returned, this is
indicated using the “void” keyword, as in “doSomething() : void”. As you can see,
the operation in the latter example takes no argument either.

GENERALIZATION

A generalization is a relationship between a more generic class, for example
Abnimal, and a more specific class, for example Dog. The generic class generalizes the
specific one as well as the specific one specializes the genetic one. A generalization
can be interpreted as an “is-a” relationship. The generic class is called the
superclass whereas the specific class is called the subclass.

Getting Started With UML Class Modeling Page 4

A class can generalize several subclasses
that are then said to specialize the
superclass. Subclasses inherit the

attributes and behavior of the superclass
but may override that. Proper usage of
inheritance can be validated by applying
the Principle of Substitutability.

In UML a generalization is indicated by drawing

address @ Strin
an open arrow from the subclass to the

superclass. The subclass is preferably put below
the superclass to express the hierarchy as in the

. Comparr Person
example to the rlght Where Company and | cuntamNamepshxg i | creditCardNumber : String |
creditlimit : Maney creditRating : String
Person are subclasses of the superclass B Sl
Customet. .
Generalization

A subclass inherits all attributes, relationships and operations from the superclass.

Generalization/specialization is therefore also referred to as inheritance. The

subclass can have specific attributes, relationships and operations and may override

the ones of the superclass.

In UML a subclass can inherit from more than one class, which is called multiple-
inheritance. Multiple-inheritance is not always supported at implementation level.
Java, for instance, does not support multiple-inheritance for classes. Thete is also a

potential risk of conflicts with multiple-inheritance. Suppose that class C inherits

from both classes A and B that both have an attribute “address” which are not

equally defined. What does that mean for class C, which address should it inherit?
Currently the class modeler of JDeveloper does not support multiple-inheritance.
Whenever this becomes an issue can it be solved by using an interface instead (to

be discussed latet).

Use generalization where relevant for the System under Discussion but avoid

overgeneralization. For example, that an Employee and a Customer both have a

name and an address does not automatically imply that you should make them

subclasses of a Person superclass. You should only do this when the Person class

means something from a conceptual point of view.

To recognize improper usage of generalization, you can apply the Principle of

Substitutability, which states that objects (instances) of the subclass may be used
everywhere objects of the superclass appear, but not vice versa. In this case this

means that everywhere Person objects appear you should be able to replace them

by Employee or Customer objects.

ASSOCIATIONS

An association is a structural relationship between classes that specifies that objects

of one class are connected to objects of another class, like Employees ate

connected to a Department.

Associations are drawn in UML as solid lines. At both ends of the line the

multiplicity of the association is indicated, which expresses how many objects of

one class are associated with how many objects of the other class. In the following

example an Employee is associated with exactly 1 Department, whereas the

Department can be associated with zero or more (*) Employees.

Getting Started With UML Class Modeling

Page 5

(=l 1Y paLRagE B
=& 2l

model

i ClassConsistsOFStudents
[company

Customer

= CustomerPlacesOrders

|E| Department

o DepartmentHasEmployees
% Emnployee

— EmployeelsSalesRepresentati
% Order

OrderHasOrderLines

|E| OrderLine

Person

PrepaidCrders

% Printer

— PrinterlsDefaultForEmplovess
|E| PrinterSpooler

Department

location [0] : String
name : String

JF-_X 'UML Class Diagram - Associations |

[

Company

[

T employees

Employee

address : Sting
bithate : Date
name : String

zalary : Money

contactlame : String
ereditlimit : Money
creditRating : Sting

cOmpanies

remind) : woid
sendhdonthlvBill (int month)

0 Money

defaultPrinter | 4

Printer

printSpooling
o= ERVRTRE

Classes and associations in the navigator

The symbols used for multiplicity are:

0.1 Optional (zero or one)

1 Required (one and only one)
* Zero or more

1.% One or more

As an alternative to *, 0..* can be used.

JDeveloper requires an association to have a name. It is good practise to start the
name with the name of one of the classes and let it express the nature and
multiplicity of the association. In the example above has the association between
Department and Employee been named as “DepartmentHasEmployees”. As you
can see the association is located in the navigator directly below the Department
class. Which class you start with is atbitrary as long as you do it consistently, for
example always from the one-side to the many-side.
Each end of an association has also a name that represents the role of that
Associations describe the relationship

association end. You use the same naming conventions as is used for attributes and
between classes. At both ends of an

association you indicate the multiplicity you let it express the multiplicity, like in the example the association between

and the role name. Employee and Company has been named “salesRepresentative” at the Employee

side and “companies” (plural) at the Company side.

In diagrams you normally show the role names instead of the name of the
association, as role names add more value to understanding the diagram. Consider
configuring JDeveloper likewise. You can do that in a similar way as has been
described in “Classes, Attributes and Operations”. At the end you select the UML
Association node instead of the UM Class node and you uncheck Show
Association Name and check Show Role Names.

Getting Started With UML Class Modeling Page 6

In UML you can also indicate the navigability of associations by drawing it as an
arrow. In the example above one of the associations has been drawn as an arrow
from Employee to Printer and not vice versa. This indicates that you are able to
“ask” an Employee what its default printer is, but you cannot “ask” a Printer for
which Employees it is the default printer. An association that is only navigable to
one side is called unidirectional whereas an association that is navigable to both

sides is called bidirectional.

Aggregation and Composition

Aggregation and composition are both a “whole-part” relationship. In case of a
composition, the patt cannot exist without the whole whereas in case of an
aggregation it can. Aggregation therefore is often called “weak aggregation” while
composition is called “strong aggregation”.

In UML an aggregation is drawn as an association with an open diamond at the
side of the “whole”, as has been done with the association between Student Group
and Student in the example below. A composition is drawn with a closed diamond
at the side of the “whole”, as has been done with the association between Order
and Order Line.

‘ StudentGroup ‘ StudentClass

‘ Part At ‘ Order ‘

T o

0 1T
studentGroup\ studentClass 1 arder | 4
studems\x = students = | orderLines

Student OrderLine

Aggregation versus composition

More on Aggregation

Aggregation implies there can be no circular relationship. In the example above,
the reflexive association of a Part indicates that part A can be a part of some other
part B but not of itself. A class can participate in more than one aggregation, like
Student in the example participates in two aggregations: one with Student Group
and one with Student Class.

More on Composition

The “whole” in a composition determines the lifespan of the “part”. In general a
deletion of the “whole” is considered to imply a cascade delete of the “parts”,
unless specified otherwise (for example as a constraint, which will be discussed
later).

Composition does not imply that a “part” cannot be transferred from one “whole”
to the other, but it is the responsibility of one “whole” to provide the “part” to

another “whole”. A class can participate in only one composition.

Getting Started With UML Class Modeling Page 7

Aggregation and composition both
represent a whole-part relationship In case
of composition does the lifespan of the
whole determine the lifespan of the parts.
Only use aggregation when its meaning is
clearly understood.

An abstract class cannot be instantiated.

The opposite is a concrete class.

Composition or Aggregation?

To understand the difference between composition and aggregation, review the
examples of the previous figure. A Student Group consists of Students. A Student
does not cease to exist when the Student Group is dismantled. You therefore
model this as an aggregation. An Order consists of Order Lines. When the Order
is deleted, the Order Lines will vanish with it. You therefore model this as a
composition.

Whether you should use aggregation or composition may depend on the context of
the System under Discussion. Suppose you want to model that a Computer
consists of parts, among them a Hard Drive. For an organization that sells
computers and supplies you probably model this as an aggregation as a hard drive
can be sold separately. But for an organization that only #ses computers, you might
decide to model this as a composition because the fact that a hard disk can be

removed from a computer is totally irrelevant for the organization.

Martin Fowler (author of “UML Distilled: A Brief Guide to the Standard Object
Modeling Language” see also “More Information” at the end) suggests to use
ageregation only if you feel yourself a fancy UML modeller. James Rumbaugh (one
of the original authors of UML, together with Ivar Jacobson and Grady Booch)
even calls it a “modelling placebo”. In general the concept of composition does
add value, but you can leave aggregation out of a model (that is: model it as a
normal association) without things going wrong. Mind that in that case you should

document non-circular reflexive associations as a constraint.

OTHER ARTEFACTS AND CONCEPTS

Abstract Classes

An abstract class is a superclass that cannot be instantiated. Put in other words:
there are no objects for that class, only for the subclasses. An abstract class can
have attributes, associations and operations like other superclasses. When a class is
not abstract, it is said to be concrete.

An example is the class Contact Item (T prrmm

received @ DateTime

that is a superclass for the concrete b

subclasses Email and Voice Mail,
assuming that for the System Under

Discussion there is conceptually no =t e

attachements [] : Aftachment]] recording : SeundClip
contents : Sting telephoneNumber : Sting

such thing as a “contact item”. In UML

an abstract class is indicated by putting display 0 vaid Pl - void

its name in italics, as in the figure on
the right. Abstract class

Getting Started With UML Class Modeling Page 8

An interface is somewhat similar to a
superclass. The difference is that a
superclass represents an “is-a”
relationship whereas an interface
represents a “behaves-like” relationship.

Interface

An interface is a collection of related attributes and operation signatures. A class
can implement or realize these attributes and operations. Whereas inheritance
from an (abstract) class models an “is-a” relationship, does the realization of an
interface model the “behaves-like” relationship. Consider an interface as some kind
of a contract to implement specific standard behaviour, while hiding the specific
implementation of this behaviour. Interface names often end with “-able” or
“ible”.

For example a Radio and a MobilePhone may both implement the interface
VolumeAdjustable, meaning they both can behave as something of which you can
adjust the volume. But generally a Radio and a MobilePhone ate not considered to
be both some “kind of”” generic class of which you can adjust the volume, making

modelling it as a generalization inappropriate.

In UML an interface is indicated

«uml interfacex
————— o VolmeAdiustable with an italic name and a dashed

+ setlouder(int dBLouder) : woid arrow from the lmplementlng

tSofter (int dBSafter) : woid .
e e o class to the interface. Furthermore

MohilePhone [~~~ " T . .
is it customary to put the interface

to the right of the implementing

The VolumeAdjustable Interface

class, as in the example on left.

To distinguish interfaces from classes, the display properties of an interface can be
set to have a different colour and to display the concept name <<uml interface>>,

as has been done in the example above.

An interface can be subclassed but only by another interface. It can also have an

association, but only with another interface.

As indicated before, an interface can be used to compensate not having the ability
to specify multiple-inheritance. For instance, suppose you want to model the class
Employee as a subclass of the Person superclass, inheriting attributes like “name”
and “address” and you also want to model it as a subclass of the User superclass,
inheriting attributes like “userid” and “password”. Modelling either Person or User
as a superclass and the other one as an interface can solve this. Using the already
mentioned Principle of Substitutability can help to decide what to do.

Constraint

In the context of class modelling a constraint can be defined as a restriction that
applies to the state an object or a set of objects (not necessarily of the same class)
can be in, or the transition of one state to another. An example of a simple
constraint is that the name of each Employee must have a value. A more complex
constraint is that a Customer with a low credit rating must pay all Orders in

advance.

Getting Started With UML Class Modeling Page 9

Many constraints can be represented in the structure of the class model itself. For

Many constraints are represented by the . L.
) instance, the association between Employee and Department represents that for
model as structural assertions. Other

constraints can be documented by using each Employee the Department must be indicated. Another example is that you

UML constraints. The nature of the can use aggregation to express that a Part cannot be a part of itself, as has been

constraint is preferably expressed using done in the example in the section “Aggregation and Composition”.

natural language.))
Constraints expressed in the structure

of the class model are often called C——arEe |

structural assertions. Other s i“i‘lu.;;’f Lo o digiit(u:;er
constraints can be documented by using "I OM: e
UML constraints that are drawn like slnatit Ol

the yellow symbol in the example on j _

the right. Constraints can be connected T wfn:ﬂm:toadt"sa’
to the classes they relate to, using the S

“Attachment” component from the
palette of the UML class modeller. The PrepaidOrders constraint

Constraints can be expressed using natural language or by using more formal ways
like for example the Object Constraint Language (OCL), which is a formal,
mathematical based language and a part of UML 2.0. OCL is not simple to
understand and only few people are familiar with it. Therefore, as long as
constraints specified in OCL cannot be transformed automatically into some

implementation, you probably are best of using natural language.

ADVANCED PROPERTIES

This section discusses some of the advanced properties of attributes and

operations.

Advanced Attribute Properties

The Type property of an attribute is by default String. You can change it on the
Attributes property tab of the class as shown hereafter. You can select types from
the poplist, select an “element” by using the Select Element button to the right of
the poplist, or key in a type yourself.

Getting Started With UML Class Modeling Page 10

Customer

address : String
LEL TN i

& UML Class: Customer s x|
General Atributes Operat\ons' Realizationsl Notesl

A classifier can have attributes, which are specific items of data that Form part of its definition. The minimun
information For an attribute is a name and a type.

Wil | “isibiliby: Ipad@gg - Mulkiplicity: |
:
address [static ™ final Nate
Type! IString LI DE
Initial Walue: §
& Select Element x|

The elements in the tree below are those visible through the current
project's model path, source path and class path. Select the element
that wou want and click OF.

1[4 Library Elements

M Qe\etel Target Scope: I

Help

B
| i Files arhedilad Foe rammmit

Setting the type using the Select Element button

Mind that a class model is not an implementation model. Therefore, rather than
using implementation types as oracle.jbo.domain.Number you use types like String,
Integer, Date or Float. You can also use user-defined types, for example Photo or
Money, as long as the meaning of the user-defined type is clear to the reader of the
diagram.

You can specify the Multiplicity property of attributes. The default is 1. You can
distinguish optional from required attributes by setting the multiplicity to 0..1. You
can also set the multiplicity to [0..*] or [3..5] for example, indicating that the
attribute consists of an unlimited array of the indicated type or an array that has at

least 3 and a maximum of 5 elements respectively.

It is a generic object-oriented principle to assume that

the data of a class never is accessed directly. This

currency

symbol : Sting
transterRate : float

principle is called data hiding. For example you get
and set the value of the attribute “name” using a

getName() and setName operation. You do not need 7

expreksedin
|

to specify those operations as they are there i

implicitly, unless the visibility (see hereafter) specifies Service
. . . name ; Sting
otherwise. However, in the example to the right the - price intagar
price of a Service is expressed in some currency SR

independent value. Instead of getting and setting the
price attribute directly you are supposed to use the Private attribute
specific operations getPrice() and setPrice() that take

the symbol of the currency as an argument and derive

the price from that.

Getting Started With UML Class Modeling Page 11

You can use the Multiplicity property of an
attribute to indicate that it is optional. You
can prevent attributes from being accessed
by other classes by adjusting the Visibility
property. The default of an attribute can be
specified using the Initial Value property.

You can enforce that subclasses need to
provide a specific implementation of an
operation by marking it as abstract at the
superclass level. Operations can be
prevented from being called by other
classes, by adjusting its visibility.

For this reason the Visibility property of the price attribute has been set to
“Private(-)”” which has been indicated by the “-”” symbol in front of the attribute
name. Other values of the Visibility property are “Public(+)”, which is the default,
“Package” and “Protected(#)”. In case of “Package” the attribute is only accessible
from other classes in the same package, in case “Protected(#)” only from the class
and every class that (indirectly) inherits from it. Mind that because of the data
hiding principle you in fact adjust the visibility of the implied getter and setter
operations for the attribute.

The default value of an attribute can be specified by setting the Initial Value
property.

Advanced Operation Properties

The Abstract property of an operation of a superclass is checked to indicate that it
should not be implemented at the level of the superclass but at the level of each
individual subclass instead. An example is the superclass Account that has an
abstract operation getTotal(), which returns the value of the Account. Account is
subclassed by the classes SavingsAccount and StockAccount that each provide a
specific implementation of the getTotal() operation.

You can use the Visibility property of an operation in a way similar to the usage
for attributes.

DEVELOPING IN ITERATIONS

Classes are normally developed in iterations. The following discusses how such an
iterative development might look like.

Domain Model

While specifying the requirements you create a domain model with domain
classes that captures the most important classes for the System under Discussion’.
The domain classes thereby detail the requirements that have been captured with
use cases (see also the white paper “Getting Started With Use Case Modelling”).

The domain classes represent “things” or “events” that exists in the environment
in which the System under Discussion works. The language that is used is the
language of the business.

! The Unified Process distinguishes between business modeling and domain modeling,
resulting in a business model ot domain model respectively. To keep it simple this paper
only uses domain model to mean both.

Getting Started With UML Class Modeling Page 12

A domain model is expressed in the
language of the business and generally is
restricted to containing the most important
classes with relation associations between
them and attributes and operations added,
but without using any of the special
modeling constructs.

An analysis model is expressed in the
language of the developer and focuses on
maintenance. However it still is a
conceptual model, meaning it should
abstract from implementation details,
especially those that address the non-
functional requirements.

Generally you specify only the most significant attributes. The relationships
between classes are specified as associations with multiplicity; usually you do not
(yet) use generalization, aggregation or composition. The navigability of an
association is also not (yet) specified. You can add operations to domain classes.
Interfaces are very rare in a domain model, as is the usage of advanced attribute or
operation properties.

Analysis Model

After finishing the domain model, the requirements are analyzed to get a better
understanding of these requirements and to describe how the system should
support them. This results in the analysis model with analysis classes. The
requirements are structured while focussing on maintenance, like resilience to

change and reusability.

The language used to describe the analysis model is the language of the developers.
But, being a conceptual model, the analysis model is supposed to abstract from
specific technologies or languages. However, whenever suited for the situation you
can adjust the analysis model to take constraints of the technology that is going to
be used into consideration. For instance, suppose JDeveloper would have
supported multiple-inheritance but the technology to be used is Java (which does
not support multiple-inheritance). And suppose that JDeveloper would lack the
option to indicate which UML superclass to transform to a Java interface and
which one to a Java superclass. It would then be sensible to explicitly model one as
a UML superclass and the other as a UML interface.

During this analysis you typically start applying design patterns. Design patterns
capture solutions that have been developed and evolved over time. Applying them
makes your model more flexible, modular, reusable and understandable. Design
patterns were popularized by Erich Gamma, Richard Helm, Ralph Johnson and
John Vlissides, who since then came to be known as the “Gang Of Four”. The
design patterns they desctibe are generally referred to as the GoF Patterns.
Another important set of design patterns, especially for the analysis model, is the
GRASP Patterns (General Responsibility Assignment Software Patterns) as has
been documented by Graig Larman (see also “More Information” at the end). The
patterns and their usage are outside the scope of this paper.

Analysis Classes Stereotypes

Regarding analysis classes a distinction can be made between the entity class,

boundary class and control class.

Entity classes atre responsible for providing the business functionality. They carry
the data that generally is persisted in, most likely but not limited to, a relational
database. Examples are the classes Employee, Customer and Order. Entity classes
typically map to (E]B) entity beans, (ADF) business components, POJO’s that are
mapped with Toplink and (“at the bottom”) database tables.

Getting Started With UML Class Modeling Page 13

Entity classes are responsible for providing
the business functionality. Boundary
classes are responsible for the interaction
with users and external components.
Control classes are responsible for
controlling the flow of events.

In the analysis model you can use any
special modeling construct that is
appropriate, like generalization,
aggregation, composition, interfaces, and
advanced attribute or operation properties.

Boundary classes are responsible for handling the interaction with the users or
external components. Boundary classes typically map to JSP or UIX pages or for

example web services.

Control classes are responsible for controlling the flow of events. They transfer
the control to the appropriate entity classes depending on the input received from
the boundary classes. A typical kind of control class is the one that coordinates the
scenario of a particular use case, with an operation for every happy and stand-alone
alternative path. The control class controls the activity and is responsible for
handling the transaction. Examples of control classes are Order Handler, or Trade
Validator in stock exchange system. Control classes typically map to (EJB) session
beans, (ADF) application modules or POJO’s.

The distinction between entity, boundary and control classes corresponds with the
J2EE Model-View-Controller (MVC) design pattern?.

You cannot stereotype classes in JDeveloper as an entity, boundary or control

class. Therefore consider distinguishing them by using different colours.

Creating Analysis Classes

You start the set of analysis classes as a copy of the domain classes from the
domain model. This can best be done by copying the JDeveloper project that

contains the domain model to a new project.

After that you start adding classes that have not been recognized in the domain
model, but are needed for the system to support the requirements. Missing
attributes are added and reference classes are created from attributes, like Country
or Order Status. You add generalizations or interfaces to the analysis model where
appropriate.

Carefully consider whether an attribute is really a property of the class or that it
should belong to some other class. Review the names of the classes, interfaces,
attributes and association roles. Choosing the right name is a good aid in
determining the correct responsibilities for classes and a very important part of
documenting the model. You ate likely to discover new attributes and classes while

doing so.

Having identified all classes with their attributes and associations, you start
reviewing the associations and use composition or aggregation where appropriate.
Consider making a superclass abstract. You set the type and multiplicity of the
attributes and add operations whete applicable. Give operations names that clearly

express their purpose.

Furthermore, the visibility of attributes or operations can be specified (ot any other
advanced attribute or operation properties that have not been discussed in this

paper).

2 Strictly speaking MVC is not a design pattern, but an aggregation of several design
patterns, like the Facade, and Command patterns and so on.

Getting Started With UML Class Modeling Page 14

You should consider the navigability of
associations of analysis classes. An
association that is navigable to one side is
called unidirectional as opposed to
bidirectional

At some point you need to consider the coupling between classes to support a
proper modularization or packaging of the model. Where applicable you make
associations unidirectional to enforce a loose coupling and avoid that packages
depend on each other in both ways.

Navigability is specifically important in the design model (to be discussed
hereafter). You can let JDeveloper transform the analysis model into a design
model consisting of Java classes or ADF Business Components. JDeveloper
thereby uses the navigability to determine if it should create an accessor attribute
to navigate to the other class. For instance, when transforming the analysis classes
Department and Employee to Java classes, the Department class gets an attribute
“employees” and the Employee class gets an attribute “department”. Deciding
upon the navigability before the analysis model is transformed has the advantage
that you do not need to add or remove accessor attributes manually during design.

The short recipe for creating analysis classes from domain classes is as follows:
1. Finalize the attributes and create new classes
Apply generalizations

Add interfaces

>N

Apply composition and aggregation

5. Set the multiplicity of attributes

6. Add operations to classes

7. Set superclasses to abstract where appropriate
8. Adjust the visibility of attributes and operations

9. (Re)package the classes and set the navigability of associations

Design Model

The analysis model provides the first cut of the design model. The design model
consists of design classes and incorporates decisions that are made to address the
non-functional requirements, like performance, distribution and so on. The design
model is specified in the language that is used for the implementation, like Java,
Enterprise Java Beans (E]B), ADF Business Components, relational tables and so
on. Especially during design you will use many design patterns. Design modelling is
out of the scope of this paper.

3 As a matter of fact, from the perspective of one class there is conceptually no
difference between an attribute that serves as an accessor to another class or any other
attribute.

Getting Started With UML Class Modeling Page 15

Compared to Entity Relationship Modeling
allows UML class modeling for expressing
more structural assertions, resulting in
lesser constraints.

UML CLASSES VERSUS ENTITY RELATIONSHIP MODEL

A UML class model is the object-oriented equivalent of the Entity Relationship
Model in the traditional Structured Analysis, though there are some notable
differences.

First of all Entity Relationship Modelling is restricted to data modelling, where in
UML this is done with the domain and analysis entity classes. There is no true
equivalent for boundary and control classes in Entity Relationship Modelling. On
the other hand is there not much need for a similar concept with Structured
Analysis, as the transformation from analysis to design is fundamentally different,
if not simpler. The comparison hereafter therefore restricts itself to the data
modelling area.

A class can be compared to an entity and an association to a relationship between
entities. Unlike an entity, a class can have operations that are used to document
specific behaviour of the class. In case of an entity one is forced to specify this
behaviour elsewhere, for instance by documenting it in one or more functions.

Common examples are calculations.

The constructs one can use with class modelling are richer than with entity
modelling. Entity subtyping is similar to inheritance but with limited capabilities, as
there is no such thing as an abstract superclass or the possibility to specify the
visibility of attributes. After two levels does entity subtyping loose its effectiveness.
There is no equivalence for multiple-inheritance with entity modelling and there

are no intetrfaces.

There is also no such thing as aggregation or composition with entity modelling.
As has been discussed, aggregation should be used with care, but compositions are
often found in class models. With entity modelling one must compensate this by
specifying constraints that express how the life span of the “whole” relates to that
of the “part”.

Generally speaking class modelling offers more options to specify structural
assertions than entity relationship modelling and therefore requires less constraints.

There is one exception though. There is no equivalent of the relational unique
identifier with class modelling. There used to exist the “candidate key” concept in
James Rumbaugh’s OMT*, but apparently it did not make it into UML. The
probable reason is that the three amigos (as Rumbaugh, Booch and Jacobson ate
called) decided that objects have an identity by definition, but that still leaves that a
unique identifier is a logical concept that people find natural to talk about. Cars
have unique licence plates, people have unique social security numbers and so on.
The concept of stereotypes in UML as such supports extending it to include
unique identifiers, but JDeveloper does not support defining new stereotypes.

* OMT stands for Object Modeling Technique and is one of the predecessors of UML.

Getting Started With UML Class Modeling Page 16

Compared to Entity Relationship Modeling
does UML class modeling also help
focusing on the problem domain rather
than the solution.

In case of ADF does not having a unique identifier impose an issue. An ADF
entity object must have a primary key. As a result you will run into problems when
automatically transforming UML classes to ADF business objects, because the
transformer will use the first attribute it encounters as primary key. In most cases
it’s the wrong one, resulting in the need to fix the business objects model. This is
especially a nuisance when the primary key plays a role in a one-to-many
association, as the wrong attribute will have been transformed into a foreign key at
the child side. You need to remove the association, fix the primary key and recreate
the association again. Therefore, currently it is not advised to automatically
transform a class model into ADF entity objects.

But in spite of all this does class modelling has its advantages over entity
relationship modelling. The advantages not only consist of the fact that you can
express more structural assertions. In my personal experience I also found that
with entity relationship modelling I have a tendency to “think in tables”. With class
modelling I have not, which helps me focussing on the problem domain rather
than thinking in solutions. More than once I found myself creating a class model,
probably superior to the model I would created otherwise when using entity
relationship modelling.

MORE INFORMATION

A good book about UML “UML Distilled: A Brief Guide to the Standard Object
Modeling Language (2nd Edition)” by Martin Fowler and Kendall Scott ISBN 0-
201-65783-2).

The GoF Patterns are documented in “Design Patterns, Elements of Reusable
Object-Oriented Software” by Erich Gamma et al (ISBN 0-201-63361-2). The
GRASP Patterns are documented in “Applying UML and Patterns, An
Introduction to Object-Oriented Analysis and Design” by Graig Larman (ISBN 0-
131-489006-2)

The official UML site can be found at http://www.uml.org/. A short and

pragmatic reference on how to use UML modelling techniques, can be found at
the site of Scott W. Ambler:

http://www.agilemodeling.com/essays/umlDiagrams.htm
Other papers in the Getting Started With series are:

Getting Started With Unit-Testing, December 2004
Getting Started With CVS, January 2005
Getting Started With Use Case Modelling, February 2005

Getting Started With UML Class Modeling Page 17

ORACLE

Getting Started With Use Case Modeling
Aprl 2005
Author: Jan Kettenis

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2005, Oracle. All rights reserved.

This document is provided for information purposes only and the
contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to any
other warranties or conditions, whether expressed orally or implied

in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle, JD Edwards, and PeopleSoft are reg ed trad ks of
Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

