Getting Started With Activity
Modeling

An Oracle White Paper
Aungust 2005

ORACLE

Getting Started With Activity Modeling

INTRODUCTION ..ottt 3
WHAT IS ACTIVITY MODELING?.......ccooiiiiiiiiccicnne 3
DRAWING CONVENTIONSccoiiiiiiiiinccecncnes 4
Action, Initial State, Final Stateccooeeeerieieeeeeiceceeeeeteceeeeeeee e 4
Decisions, Guard Conditions and Mergescccovveviviviiicccceeeenenes 5
SYNCH SEALES ..o 5
SWIMIANES....vviiiiiir e 6
Object States and Object FIOWccoviiiiiiiiiiciiiciccccnes 6
SUDACHVILIES ...t 6
USING ACTIVITY DIAGRAMS ..o 7
ORGANIZING ACTIVITY DIAGRAMS ..o 8
MORE INFORMATIONc.ccoiiiiiiiiiici e 8

Getting Started With Activity Modeling Page 2

Activity diagramming is used to model the
dynamic aspects of a system. It is best
known for detailing use cases, but can be
used for other purposes as well.

Getting Started With Activity Modeling

INTRODUCTION

Activity modeling is about creating a diagram that represents the dynamic aspects
of a system by showing the flow of control from one action to another, and is one
of the main UML modeling techniques. This paper discusses how activity diagrams
can be used and how to create them using JDeveloper 10.1.2.

WHAT IS ACTIVITY MODELING?

As has been stated in the introduction an activity diagram represents the dynamic
aspects of a system. Its purpose is to focus on flows driven by internal processing,

rather then by external events.

Activity diagrams perhaps are best known as a way to detail use cases. In particular
an activity diagram can be used to illustrate the scenario of a use case (see also the
white paper “Getting Started With Use Case Modeling”). But its usage is not
restricted to use cases, as in principle the level of modeling can vary from business-
level activities (like the life cycle of a bank account) to a piece of program code
(like the one responsible for updating the balance of an account).

The scope of the diagram is a task with a clear starting point and that finishes by
reaching some end point with a clear defined result. The task is executed by
performing one or more actions. The diagram shows how the actions follow each
other. Depending on certain conditions the sequence of actions can vaty for
different executions of the activity. The example of the figure below shows an
activity with three actions and two alternate routes, indicating that this activity can
have two different results.

[not availahle]

Get Book From Bookstore

Getting Started With Activity Modeling Page 3

An activity diagram models one activity and

is made up of actions.

Actions, or action states as they officially
are called, can be best named using the
verb-noun construction. An activity starts
with one initial state and ends in one or
more final states. The states are connected
with each other by transitions.

In principle the activity is the whole task that is being modeled, in the figure
above being “Get Book From Bookstore”. The shapes with the rounded corners
are the actions that make up the activity. As you will see later on, an action can be
detailed resulting in a new activity diagram in which the action has become the

>

activity. In practice the term “activity” is often used to mean both, but for reasons

of clarity this paper will make a distinction between the two.

DRAWING CONVENTIONS

Action, Initial State, Final State

You probably are already aware that an action, or action state
as UML officially calls it!, is drawn as a rectangular shape with /Do something.

rounded corners, as in the figure on the right. Each action has
a text in it, which is called the action-expression.

According to UML the action-expression does not need to be unique in the
diagram. However, JDeveloper does not allow you creating a new action-
expression with a name that already exists, but you can copy and paste an existing
action. This results in a new action symbol in the diagram that has the name of the
original one with “(re-use)” as a postfix, like “Do something (re-use)”. In this way
you can reuse the same action elsewhere in the diagram to prevent crossing
transitions from cluttering the diagram.

There is no official naming convention for action-expressions. In practice it is best
to keep the name as short as possible, using the verb-noun construction, like

“Request service”, “Deliver order” and so on.

An activity always begins with a starting point, which UML
officially calls the initial state and which is drawn as a solid
circle. There can be only one initial state in an activity

diagram, which can have only one transition connecting the
initial state to an action as in the figure to the left.

An activity has at least one ending, which is drawn by using
a so-called final state as a solid circle with an open circle

around it, like in the figure on the right. As you can see in

the earlier example activity “Get Book From Bookstore”, an
activity can have more than one final state.

! Which is strange when you think of it. As the activity is the whole thing you might
expect this having been called “activity state”, indicating a specific state the activity is
in at a certain point of time.

Getting Started With Activity Modeling Page 4

Activities can have alternate routes. The
routes are determined by decisions and
depend on the guards of that decision.
Alternate routes can join each other later
on using a merge.

Actions can be executed asynchronously,
which is modeled by using synch states to
fork them as well as to join them later on.

Decisions, Guard Conditions and Merges

In some cases the flow of control depends on a decision that is made, based on
specific guard conditions or guards for short. A guard indicates when to follow
the transition to the next action. All guard conditions of a decision should be
mutually exclusive. A decision is indicated with a diamond symbol, as in the
following figure.

[successful test]

The text of a guard is put between square brackets. In the figure a special [else]
guard has been used to indicate all other, non-specified guards. The transition
labeled with the [else] guatd is followed when none of the other guard conditions
hold.

As you can see a decision results in alternative routes for the activity, one for each
guard condition. For some activities alternative routes may join each other at some
other point. For this also the diamond symbol is used, this time without guard
conditions and only one transition leaving it. This is called a merge. Whenever

alternate routes do not join, you will have more than one final state.

UML also allows another way of drawing decisions. Instead of drawing a diamond,
two or more lines leave the action, each line having a guard label above it. As this
way of drawing decisions is less explicit I do not recommend using it.

Synch States

For some activities there are actions that are executed asynchronously. To model
this, you can use so-called synch states that are drawn as a thick solid line. One
synch state is used to fork execution threads and another one to join them again, as
in the figure below. Asynchronous threads must join at some point, but in-between
a forked thread can be forked again.

ap T .o
— G

Getting Started With Activity Modeling Page 5

Actions can be organized by the entities
that execute them, using swimlanes.

You can model changes of the state of an
object by including object states and object
flows in the diagram.

Swimlanes

Actions can be organized by the entities that execute them (people, organizations,
or other types of objects), using so-called swimlanes. In case of an activity
diagram that details a use case, these entities typically are the actors for that use
case. UML prescribes that swimlanes are drawn as vertical lanes, but JDeveloper

only supports horizontal lanes, as in the following figure.

iustomer Collect order
i Order
Sales
Y laced
7S
|
|
/
/
= !
’ !
4 /
Order
Stockroom fill e
et //
Fill order

In this figure a swimlane has been created for the actors “Customer”, “Sales” and

I

|

) ©
delivered

I

|

Deliver arder

“Stockroom”. You are not required to use swimlanes, but in many cases using
them improves the clarity of the diagram, as for each action it is cleatr who is
responsible.

Object States and Object Flow

To model how actions manipulate an object thereby changing its state, you can add
this object multiple times to the diagram, each time in a different state, as object
states. Object states are rendered as a rectangle with the name of the object
underlined and its state between brackets.

Transitions or object flows to and from object states are drawn as dashed lines, as
has been done in the previous figure where the “Order” object has been included
in four different states. When two actions are connected by an object state you do

not also draw a transition directly between these two actions.

Subactivities

An action can be detailed by drilling it down into a lower-level activity diagram.

<=iob.€ﬁ.a~:1%5mi%éﬁé >

This action is then officially called a subactivity.

Subactivities are indicated by the prefix “top” in the

name and an icon in the bottom-right corner of the

action symbol, as in the figure on the right.

Getting Started With Activity Modeling Page 6

An action can be drilled down in a lower-
level activity diagram. The drilled down
action is then called a subactivity .

You can use an activity diagram to model a
workflow or an operation. In both cases you
can use it to model an object flow.

Keep in mind that the initial state of drilled down activity diagram cotresponds
with the transition that enters the top action and that normally it has exactly one
final state that corresponds with the transition that leaves the top action.

USING ACTIVITY DIAGRAMS

So, activity diagrams can be used in the context of the system as a whole or a
subsystem to as small as an operation or a class. You can also attach activity
diagrams to a use case (to model a scenario) and to collaborations (to model the

dynamic aspects of a society of objects).

You typically use activity diagrams in two ways, either to model a workflow or to
model an operation. In general activity diagrams that detail a use case will be of the
first type. In both cases you can use the activity diagram specifically to model an
object flow, showing which action(s) result in what object states. In case of a
workflow the object will be a business object, whereas in case of an operation it

will concern a system object.

When modeling a workflow you focus on the activities from the perspective of the
actors involved. When modeling an operation you concentrate on the details of a

computation or a page flow.

A short recipe for creating a workflow activity diagram (probably it’s most

common use), is the following:

1. Establish the focus of the activity that is going to be modeled. For non-
trivial systems it will be impossible to show all interesting workflows in one
diagram.

2. Select the actors that are actively involved in the activity under discussion,

where “actively” means that they will perform one or more activities.
3. Create a swimlane for each of these actors.

4. Identify the preconditions of the initial state and the postconditions of the
final state(s), in order to determine the boundaties of the workflow.

5. Identify the activities that make up the workflow and put them in the
diagram. In case there are too many activities (being more than seven) try
to collapse several actions into one (sub activity state), which is expanded in

a lower-level activity diagram.

6. Draw the transitions that connect the activities, by starting with the main
sequential flow (the main success scenatio, in case you are detailing a use
case), then add decisions and after that synch states to fork and join

asynchronous actions.

7. Finally, if there are important objects involved, include them as well
showing their state changes.

Getting Started With Activity Modeling Page 7

You can organize activity diagrams by
putting them in a package that is a sub
package of the modeling object they detail.

In case an activity diagrams is used to detail a use case, each steps of the scenario
can be included in the diagram as an action. Like you can detail a step in the
scenario by creating a lower-level use case for it, you can also detail the step by
creating an activity diagram for its related action (subactivity). As a matter of fact,
you have the option to do either one or both, whatever adds best value to making
the description cleat.

ORGANIZING ACTIVITY DIAGRAMS

As has been described in the white paper “Getting Started With Use Case
Modeling” activity diagrams that detail a use case can be put in a sub package of
the package where the use case is in, for example
“mycompany.myproject.usecases.actor1.activities”.

An activity diagram that is used to model an operation of a class can be put in a
sub package of the package where the class is in, for example
“mycompany.myproject.model.operationActivities”. Activity diagrams for other kinds of
purposes can be organized in a similar way, that is as a sub package of the
modeling object that is being detailed.

The activity diagram of a subactivity can be put in a package with the name of the

subactivity, for example “mycompany.myproject.usecases.actor1.activities.checkStorage”.

MORE INFORMATION

The official UML site can be found at http://www.uml.org/. A short and very

pragmatic reference on how to use UML modeling techniques, can be found at the
site of Scott W. Ambler:

http://www.agilemodeling.com/essays /umlDiagrams.htm
Other papers in the Getting Started With series are:

Getting Started With Unit-Testing, December 2004
Getting Started With CVS, February 2005

Getting Started With Use Case Modeling, March 2005
Getting Started With Class Modeling, April 2005

Getting Started With Activity Modeling Page 8

ORACLE

Getting Started With Activity Modeling
August 2005
Author: J.J. Kettenis

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2005, Oracle. All rights reserved.

This document is provided for information purposes only and the
contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to any
other warranties or conditions, whether expressed orally or implied

in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle, JD Edwards, and PeopleSoft are reg ed trad ks of
Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

